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Mechanism of induction of binucleated
cells by multiwalled carbon nanotubes as
revealed by live-cell imaging analysis
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Abstract

Introduction: Asbestos-induced formation of mesothelioma has been attributed to phenotypic and morphological
changes in cells caused by polyploidization and aneuploidization, and multiwalled carbon nanotubes (MWCNTs) are
suspected to have similar adverse effects due to the similarity in their physical form. MWCNTs and crocidolite, a
kind of asbestos, show similar genotoxicity characteristics in vitro, including induction of binucleated cells. We here
focused on the mechanisms underlying polyploidization during cell division on exposure to MWCNTs and
conducted confocal live-cell imaging analysis using MDA-435 human breast cancer cells in which chromosomes and
centromeres were visualized using fluorescent proteins.

Findings: During anaphase, relatively short MWCNT fibers (approximately 5 μm) migrated rapidly to either of the
daughter cells, whereas some long MWCNT fibers (approximately 20 μm) remained inside the contractile ring and
induced the formation of binucleated cells through impairment of cytokinesis. This toxicity mechanism has also
been observed with crocidolite.

Conclusions: Our findings indicate that the mechanism of polyploidization by MWCNTs is very similar to that observed
with crocidolite.
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Introduction
Multiwalled carbon nanotubes (MWCNTs) have been
suggested to be similar to crocidolite in terms of toxicity,
given the similarity in their physical form [1–3]. Some
animal studies have indicated that similar to crocidolite,
intraperitoneally administered MWCNTs induce meso-
thelioma with a high frequency [4–6]. These results are
generally consistent with the “Stanton–Pott hypothesis”
that asbestos fibers with a diameter of ≤0.25 μm and
length of ≥20 μm are highly carcinogenic [7, 8]. Muller
et al. reported no increase in carcinogenesis in Wistar rats
following intraperitoneal administration of short carbon
nanotube (CNT) fibers whose length was less than that in-
dicated in the hypothesis (average length: ≤1 μm) [9]. Only
a limited number of in vivo studies have investigated the
genotoxicity of MWCNTs [10, 11]. Kato et al. [11]
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performed intratracheal injection of MWCNTs (width: 70–
110 nm, length: 1–4 μm) in wild-type ICR mice and found
that the results of a comet assay, oxidative DNA adduct
assay, and immunohistochemical analysis of nitric oxide
synthase with the lung tissue were all positive. Therefore,
the genotoxicity of MWCNTs has been shown to result pre-
dominantly from oxidative stress induced by excessive in-
flammatory responses to CNT fibers.
MWCNTs and asbestos show similar genotoxicity char-

acteristics even in cell culture experiments, and both are
known to induce polyploid cells (and multinucleated cells)
with a high frequency [12–15]. Chromosomal abnormal-
ities caused by polyploidization and aneuploidization alter
the expression of a variety of genes involved in carcinogen-
esis and thus are believed to be closely related to asbestos-
induced mesothelioma and bronchial cancer, as observed
in animal studies [16, 17]. Jensen et al. conducted time-
lapse analysis using a microscope applicable for live-cell
observation to determine the mechanisms underlying the
induction of abnormal binucleated and multinucleated
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cells by asbestos [18]. They observed that comparatively
long crocidolite (15–50 μm) fibers were trapped in the
contractile ring during anaphase in LLC-MK2 epithelial
cells, which created a physical barrier to cytokinesis, even-
tually causing formation of binucleated cells. On the other
hand, many reports have demonstrated a causal role of
MWCNTs in cell multinucleation and polyploidization;
however, only few have directly demonstrated the mechan-
ism underlying the occurrence of these aberrations [19].
In this study, we conducted time-lapse analysis with a

high-resolution confocal live-cell imaging system to elu-
cidate the mechanism involved in the MWCNT-induced
formation of binucleated cells using dichromatically vi-
sualized human cells in which chromosomes and centro-
meres were stained with different fluorescent proteins.
We found that short CNT fibers (approximately 5 μm)
migrated to either of the daughter cells immediately
after chromosome segregation, whereas long fibers (ap-
proximately 20 μm) formed a bridge structure between
the 2 daughter cells during anaphase and induced the
formation of binucleated cells by impeding cytokinesis.
This physical disruption of cytokinesis was very similar
to the asbestos-induced disruption described above.

Materials and methods
MWCNTs
The MWCNTs used in this study were MWCNT-7 (Lot
No.060125-01k) manufactured by Mitsui & Co., Ltd.
(Ibaraki, Japan), which was same batch used in the study
reported by Takagi et al. [4]. According to the report,
these MWCNT fibers were approximately 100 nm in
diameter and contained 27.5 % of MWCNTs ≥5 μm in
length. The MWCNTs were suspended in 100 % fetal
bovine serum (Gibco, Invitrogen, NY, USA) at a concen-
tration of 1 mg/mL and were autoclaved for 15 min at
121 °C. Thereafter, Tween 80 (Tokyo Chemical Industry
Co., Ltd., Tokyo, Japan) was added to a final concentra-
tion of 1.0 % in fetal bovine serum. The resulting mix-
ture was subjected to ultrasonication using an ultrasonic
homogenizer (VP30s, TAITEC Co., Saitama, Japan).

Cell culture
Dichromatically visualized MDA-435 human breast cancer
cells, in which chromosomes and centromeres were stained
with a red fluorescent protein (mCherry–Histone H3
fusion) and green fluorescent protein (EGFP–CENP-A fu-
sion), respectively, were kindly provided by Dr. Kenji Sugi-
moto (Osaka Prefecture University, Osaka, Japan) [20]. The
cells were cultured at 37 °C (5 % CO2, 100 % humidity) in
Dulbecco’s Modified Eagle’s medium (DMEM) (Nacalai
Tesque, Kyoto, Japan), supplemented with 10 % fetal bovine
serum. MDA-435 cell line, isolated from ductal adenocar-
cinoma of female breast, is aneuploid with most chromo-
some counts in the 55–60 range (modal number = 56) [21].
Live-cell imaging
We used an FV1000 laser fluorescence microscope
(Olympus Corp., Tokyo, Japan) equipped with a humid
chamber to capture images as the cells were cultured.
We also used a multi-Ar and He–Ne G laser and an ob-
jective lens with 60× magnification (1.20 Numerical
Aperture). For imaging, 5 × 105 MDA-435 cells were cul-
tured in 2 mL of DMEM containing 10 % fetal bovine
serum (37 °C, 5 % CO2, 100 % humidity) in a 35-mm
glass base dish (IWAKI, ASAHI GLASS CO., Ltd.,
Tokyo, Japan). To minimize cytotoxicity of the laser, we
conducted the experiments at a weak laser output such
that ≥50 % cells divided after 24 h among the control
cells. The acquired images were edited using Volocity
Software (PerkinElmer Inc., Massachusetts, USA), and
the resulting moving images were analyzed. When
MWCNTs were added to the medium (final concentra-
tion: 0, 12.7, 25.3, or 50.6 μg/mL), images of a visual
field containing a large number of cells in metaphase
were taken at 5-min intervals for a period of 48–72 h (in
the z-axial direction, photographs were taken every
2.0 μm). All cells in the visual field were counted for
each MWCNT concentration, and the incidences (%) of
cells that completed cell division, cells that were unable
to undergo cell division and subsequently died, and cells
that became binucleated were calculated by dividing the
number of such cells by the total cell count. We did not
take statistical analysis for the incidences of divided,
dead, and bi-nucleated cells, since the images of a visual
field containing a large number of cells in metaphase
were intentionally selected. Bi- and multi-nucleated cells
had more than two nuclei in a cell. The cell death was
defined as mitotic catastrophe during M-phase (from
prophase to telophase). Approximate length of MWCNT
fiber was estimated from bar length given in each
images.

Results and discussion
Endocytosis of MWCNTs
We conducted time-lapse imaging at the MWCNT con-
centration of 50.6 μg/mL to determine how MWCNTs
undergo endocytosis. The results showed that some cells
actively ingested and incorporated CNT fibers within a
few hours after addition of MWCNTs (Additional file 1,
the right side in the movie) and other cells did not. Simi-
lar findings have been reported in a previous study in
which MWCNTs were easily incorporated within 24 h in
experiments with human neonatal epidermal keratino-
cytes [22]. CNT fibers that were incorporated into a cell
remained there for a long time without being ejected
and migrated to either of the daughter cells after cell
division. In addition, we observed that CNT fibers were
frequently stuck to the cell surface. After 72 h, virtually
no abnormal cells (such as multinucleated cells) were



Control CNT treatment CNT only

Fig. 1 Comparison of untreated (control) and MWCNT (50.6 μg/mL) treated cells after 72 h. Many abnormal cells (such as multinucleated cells)
were found in the MWCNT-treated cell group (the white dotted line in the image). Bar, 41 μm
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found in the untreated (control) group of cells (Fig. 1).
On the other hand, in the MWCNT-treated cell group,
most cells were entangled with CNT fibers, and many
multinucleated cells were observed (Fig. 1, the white
dotted line).

Cytotoxicity of MWCNTs and the incidence of binucleated
cells
Time-lapse images of MDA-435 cells in the medium
containing MWCNTs (0, 12.7, 25.3, or 50.6 μg/mL) were
taken up to 72 h. The experiment was conducted 3
times with each concentration, and 232, 112, 170, and
282 cells were imaged in the visual field, respectively
(Table 1). Among the untreated cells, 93 (40 %) of the
232 cells completed cell division and only 4 (1.7 %) cells
died during cell division. In the MWCNT-treated group,
Table 1 Observation of cell division involving MWCNTs using live-ce

MWCNTs (μg/mL) Experiment Total of recorded cells No. of divided cells

0 1 76 37

2 74 27

3 82 29

Total 232 93 (40 %)

12.7 1 33 16

2 32 13

3 47 11

Total 112 40 (38 %)

25.3 1 38 5

2 51 19

3 81 25

Total 170 49 (27 %)

50.6 1 86 12

2 101 11

3 95 11

Total 282 34 (12 %)
aStatistical analysis for the incidences of divided, dead, and binucleated cells was n
40 (38 %), 49 (27 %), and 34 (12 %) cells completed cell
division and 4 (3.2 %), 11 (5.9 %), and 21 (7.6 %) cells
died at concentrations of 12.7, 25.3, and 50.6 μg/mL,
respectively. Thus, the number of cells that completed
cell division decreased and the number of dead cells
increased with an increase in MWCNT concentration,
indicating the concentration-dependent cytotoxicity of
MWCNTs. However, endocytosis of MWCNT was dif-
ferent depending on individual cells, as described above.
Some cells did not undergo cell death when incor-
porated a small number of CNT fibers. Actually, both
incidences of divided cells between control and low
concentration (12.7 μg/mL) were almost same (40 and
38 %), as shown in Table 1. When ingested many CNT
fibers even at low concentration, the cells gave rise to
mitotic catastrophe. In addition, the number of
ll imaginga

No. of dead cells during mitosis No. of binucleated cells during mitosis

1 0

2 0

1 0

4 (1.7 %) 0

0 0

1 0

3 0

4 (3.2 %) 0

2 1

2 2

7 2

11 (5.9 %) 5 (3.0 %)

10 1

5 0

6 0

21 (7.6 %) 1 (0.4 %)

ot done, as described in Materials and Methods
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binucleated cells was 0 (0 %), 5 (3 %), and 1 (0.4 %) at
the respective concentrations. A possible reason for the
lower incidence of binucleated cells at the highest dose
of 50.6 μg/mL than at the lower dose of 25.3 μg/mL was
that the cells underwent cell division less frequently at
the highest dose, as described above; furthermore, a very
large number of cells did not enter the mitotic phase
and remained in interphase during imaging.

Formation of binucleated cells through disturbance of
cytokinesis
Time-lapse images of typical cell division involving
MWCNTs are shown in Fig. 2. Normal cell division was
completed within 30 min of chromosome segregation
during metaphase. Cell division involving short CNT fibers
(approximately 5 μm) (Fig. 2a) occurred smoothly, similar
to that in the untreated group of cells, and was completed
within 30 min. These short CNT fibers migrated to the
daughter cells immediately after chromosome segregation
Fig. 2 Time-lapse analysis of cell division involving MWCNT fibers (25.3 μg/
division. b Long MWCNT fibers (approximately 20 μm) inhibited cytokinesis
in the image at 5 h 40 min). Time (h:min) is shown at the top. Bar, 41 μm
(the white arrow in Fig. 2a) and presumably exerted no
lethal damage during karyokinesis or cytokinesis. In
contrast, cell division involving long CNT fibers (ap-
proximately 20 μm) took almost 3 h (Fig. 2b). The long
CNT fibers formed a bridge between the 2 daughter
cells during anaphase (arrowheads in Fig. 2b), and
remained in the contractile ring (2:30). Thereafter,
karyokinesis was only slightly delayed and was com-
pleted normally without micronuclei formation (2:50).
However, approximately at the same time, cytokinesis
was impeded by the CNT fiber bridge; consequently, the
constriction of the contractile ring was gradually
abrogated (3:20). Thereafter, the borderline between the
2 cells disappeared (4:40), resulting in the formation of
binucleated cells (5:40, the white dotted line). This dis-
ruption of cytokinesis was very similar to the process
observed with crocidolite [18].
MWCNTs used in this experiment contained approxi-

mately 3500 ppm of iron and thus may have caused
mL). a Short MWCNT fibers (approximately 5 μm) did not inhibit cell
and induced the formation of binucleated cells (the white dotted line



Yasui et al. Genes and Environment  (2015) 37:6 Page 5 of 6
oxidative DNA damage to the cell genome by the react-
ive oxygen species formed during the Fenton reaction
[4, 23, 24]. Nonetheless, even with the analysis system
used in this study capable of detecting extremely small
micronuclei [25], we did not observe any abnormality
(such as micronuclei formation or abnormal multipolar
division involving multiple centromeres) attributable to
incubation with CNT fibers within the 72-h imaging
period. Asakura et al. used MWCNT-7 (iron content:
4400 ppm) obtained from the same manufacturer to
perform a chromosome abnormality test, an in vitro
micronucleus test, and the Hprt gene mutation assay in
Chinese hamster lung (CHL/IU) cells. The test results
were all negative, but they observed an increase in the
number of binucleated and polyploid cells with an
increase in MWCNT concentration [14]. These results
are consistent with the mechanism of induction of binu-
cleated cells observed in this study and suggest that CNT
fibers containing comparatively less iron result in greater
physical disruption of cytokinesis than DNA damage by
reactive oxygen species. In other words, MWCNTs may
allow karyokinesis to proceed and may induce abnormal
cells that are either binuclear or tetranuclear, considering
that MWCNTs inhibit cytokinesis but do not cause
lethal damage to the nucleus or chromosomes to the
extent that prevents cell division (Fig. 1).
In conclusion, we observed that comparatively long

MWCNTs (approximately ≥20 μm) inhibited cytokinesis
during cell division and induced the formation of
binucleated cells, whereas short MWCNTs did not.
These results indicate that the mechanism of induction
of binucleated cells by MWCNTs is very similar to that
observed with crocidolite.

Additional file

Additional file 1: Time-lapse of endocytosis of cells exposed to
MWCNT (50.6 μg/mL). MWCNTs were easily incorporated within a few
hours. CNT fibers that were incorporated into a cell remained there for a
long time without being ejected and migrated to either of the daughter
cells after cell division. Bar, 41 μm.
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