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Abstract

γH2AX, the phosphorylated form of a histone variant H2AX at Ser 139, is already widely used as a biomarker to
research the fundamental biology of DNA damage and repair and to assess the risk of environmental chemicals,
pollutants, radiation, and so on. It is also beginning to be used in the early non-clinical stage of pharmaceutical
drug development as an in vitro tool for screening and for mechanistic studies on genotoxicity. Here, we review
the available information on γH2AX-based test systems that can be used to develop drugs and present our own
experience of practically applying these systems during the non-clinical phase of drug development. Furthermore,
the potential application of γH2AX as a tool for in vivo non-clinical safety studies is also discussed.

Background
γH2AX, the phosphorylated form of a histone variant
H2AX at Ser 139, plays a crucial role as a platform on
which DNA repair complexes are formed at the sites of
DNA double-strand breaks (DSB) [1]. Since the H2AXs
around the DSB are phosphorylated in the range of several
Mbp, the DSB can be viewed microscopically as a focus of
γH2AX in a simple and sensitive immunohistochemistry
(IHC) technique with anti-γH2AX monoclonal antibodies
[2]. Therefore, γH2AX has been widely utilized as a bio-
marker of DNA lesions when evaluating the genotoxicity
of chemicals [3, 4] and nanomaterials [5]. It is also used as
a bio-dosimeter for cancer radiotherapies and chemo-
therapies [6], and as a marker for assessing the safety of
environmental chemicals [7] or radiation exposure [8].
Recently, γH2AX is also used as a marker of genotoxicity

in pharmaceutical drug development [9]. Because the early
stage of drug development requires high-throughput
screening (HTS) assays that can rapidly evaluate a var-
iety of chemical candidates, the simple methodology of
the γH2AX assay makes it well-matched to this purpose.
When a candidate shows positive in the early stage geno-
toxicity tests, the mechanistic potency of the compound
should be considered when assessing the risk to poten-
tial patients, and an appropriate strategy for the later

development stages should be established. As a tool to
investigate the mechanistic potency, γH2AX has been
tried in combination with an in vitro genotoxicity test,
such as the in vitro micronucleus test (MNT). In practice,
since various in vitro methods are available for detecting
γH2AX induction, it is important to select appropriate
methods that fulfill the specific purpose at each develop-
ment stage.
In the clinical study stage, γH2AX has been broadly used

as a biomarker of DSB for over a decade [10] but there are
no reports of it being used in non-clinical in vivo studies in
experimental animals. Considering the successful use of
γH2AX in the area of clinical studies, it can be assumed
that γH2AX can provide important information in experi-
mental animal samples from non-clinical studies. In this
review, we introduce examples from our own experience
of applying in vitro γH2AX detection systems to pharma-
ceutical drug development. The possible application of
γH2AX to in vivo evaluation in the non-clinical stage is
also discussed.
This review is based in part on a presentation given at

the open symposium of the Japanese Environmental
Mutagen Society (JEMS) in 2017 [11].

Use of γH2AX in early screening as a single
endpoint
Non-clinical genotoxicity studies undertaken during the ap-
proval process of new drugs are conducted in accordance
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with ICH S2(R1) guidance [12] and OECD guidelines.
Because large amounts of drug candidates are needed
for the relatively large-scale studies demanded by the
guidelines, only one final candidate that has been selected
through numerous screenings and studies is subjected to
the studies required for these applications (Fig. 1).
To do this, the candidate is generally selected stepwise

during the early non-clinical stage through a series of
screening assays. As well as being high-throughput, the
screening assays also need to be highly-predictive to be
in accordance with the guidance or guidelines. Addition-
ally, when genotoxicity is revealed in the candidate com-
pounds, its mode of action (MoA) should be defined as
early as possible in development so that a non-clinical
study package including 2nd in vivo studies that match
the potential indication can be established.
It is important to elucidate whether the MoA of micro-

nucleus induction is clastogenic (a direct lesion of DNA)
or aneugenic (an indirect interruption of chromosome
segregation) at the early stage so that strategies for drug
development in the late stage can be established. If the
MoA is aneugenic, not clastogenic, and there is sufficient
safety margin between the effective dose and the geno-
toxic dose in potential patients, the development of that
candidate may be continued.
The test systems used to detect γH2AX induction in

early-stage screenings vary depending on the purpose,
being either throughput-oriented or mechanistic analysis-
oriented. Smart et al. reported that their HTS method
with flow cytometry (FCM) in L5178Y had high sensitivity
(91%), specificity (89%), and concordance (91%) compared
to the pre-existing in vitro genotoxicity test systems [13].
Garcia-Canton et al. reported that a high-content screen-
ing (HCS) method in human bronchial epithelial cells (in
which aneugens were counted as genotoxins) showed high

sensitivity (86%), specificity (88%), and concordance (accur-
acy, 86%) [14]. Tsamou et al. reported that FCM in HepG2
had sensitivity, specificity, and concordance (accuracy) of
54%, 78%, and 69%, respectively. They concluded that
their assay was useful for genotoxicity screenings, albeit
minor modifications would be needed to improve the
low sensitivity [15].
By and large, these reports suggest that using γH2AX

as a single endpoint in screening assays can achieve sen-
sitivity, specificity, and concordance levels equivalent to
pre-existing in vitro mammalian cell genotoxicity assays,
independently of which cell lines or detection method-
ologies (imaging or cytometry) are selected.

Use of γH2AX combined with other endpoints in
early screening
The simplicity of γH2AX detection methods makes it
easy to combine with another endpoint assay to obtain
mechanistic information. Ando et al. reported that cell
cycle analysis was effective in the HCS method in HepG2
cells to infer genotoxicity mechanisms [16]. Matsuzaki
et al. discriminated an aneugenic MoA from a clastogenic
one by combining γH2AX induction data measured by
cell-ELISA with micronucleus induction data [17].
Khoury et al. measured phosphorylation at Ser 10 of
histone variant H3 as a marker of mitotic cells in
addition to γH2AX induction and could then discriminate
aneugens from clastogens in 3 cell lines including HepG2
[18]. Harada et al. reported that co-staining caspase-3 and
γH2AX enabled them to distinguish apoptotic γH2AX
induction from genotoxic induction, and that only clas-
togens induced genotoxic γH2AX [19]. Because their
method simply used an aliquot of cell suspension from
the OECD assay to measure micronucleus induction,
the experimental platform (cell culture plates, cell density,

Fig. 1 A model strategy for assessing the genotoxicity of drug candidates in non-clinical studies. Early evaluation of γH2AX during screening
provides information on the genotoxic MoA, which enables a strategy to be set, even at an early development stage, and allows non-clinical
test batteries for regulatory applications to be chosen. The figure illustrates the timing of each genotoxicity test: in vitro/vivo micronucleus test
(MNT), Ames tests, in vitro MNT accompanied with γH2AX evaluation (in vitro MNT + γH2AX), in vitro/vivo MNT accompanied with fluorescence
in situ hybridization using centromeric DNA probes (MNT + FISH), chromosomal aberration (CA) tests, and comet assay
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volume of culture media, and so on) for their method
complied with the OECD guideline. Bryce et al. established
the multi-endpoint FCM assay in TK6 cells in which p53,
phospho-H3, and 8 N cells were measured, allowing them
to successfully classify chemicals into aneugens, clasto-
gens, and non-genotoxins [20]. Smart et al. applied the
FCM-based γH2AX assay in mouse lymphoma cells to
an analysis of structure-activity relationships (SAR) on
topoisomerase inhibitors [21].

Case 1: An example of use in a genotoxicity screening
The following is an example of applying γH2AX evalu-
ation to the early non-clinical stage, and shows that use of
γH2AX in early screening enabled us to avoid unnecessar-
ily eliminating potential candidates that were positive in

an in vitro MNT (Fig. 2). We used combined endpoints
of γH2AX and micronucleus induction in TK6 cells in
a 96-well HCS imaging assay, in which data were concur-
rently obtained from the same plates of TK6 cells treated
with 28 compounds that are pharmacologically effective
against various types of tumors. As a result, 26 of 28 com-
pounds showed positive in the MNT, but those 26 com-
pounds did not induce γH2AX. The results suggested that
the 26 compounds were aneugens and avoided having to
withdraw the compounds. When the potency of micronu-
cleus induction was defined as the dose that provided the
maximum frequency of micronuclei, a good correlation
between the induction potency and the efficacy was
seen (Fig. 2b). This correlation suggested that the MoA
of micronucleus induction might be related to the

a-1

b

a-2

Fig. 2 a-1 When compounds were screened in vitro in the MNT without γH2AX evaluation, 26 out of 28 drug candidates showed positive, which
could have resulted in the withdrawal of 26 candidate compounds. a-2 On the other hand, when they were screened in the MNT with γH2AX
evaluation, none of the 26 candidates showed γH2AX induction; therefore, all the candidates were suggested to be aneugens and were transferred to
the next development stage without being withdrawn. b The scatter plots show the relationship between micronucleus induction and pharmacological
efficacy. The vertical axis represents the potency of micronucleus induction, defined as the negative log of the dose that provided the maximum
frequency of micronuclei. The horizontal axis shows the pharmacological efficacy, defined as the negative log of the 50% inhibitory concentration (IC50)
on target enzyme activity. A high correlation of micronucleus induction with pharmacological efficacy suggested that the MoA of induction was related
to an on-target pharmacological effect. Since the intended indication of the drug candidates was anti-tumor, the on-target effect was assumed not to be
a drawback in drug development
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pharmacological efficacy, which was an inhibitory effect
on the target enzyme. In the example, we could deter-
mine at the early screening stage whether these MNT-
positive compounds could fulfil safety criteria during
development or not. If we did not have the γH2AX-based
mechanistic information, these MNT-positive compounds
would have been discarded, or a laborious FISH analysis
on several compounds would have become necessary at
the later stage.

Case 2: An example of use in a mechanistic study
The second case of γH2AX evaluation is an example of
putting emphasis on mechanistic analysis (Fig. 3). We
measured γH2AX induction in TK6 cells by FCM with
several candidate compounds that had been selected in
an efficacy screening (Harada et al.). In the assay, the
same experimental platform (culture scale, cell density,
and so on) was adopted as in vitro MNT based on the
OECD guideline. As a result, these compounds were
proved to be aneugens because they induced micronuclei
but not γH2AX. This allowed a development strategy for
the screening stage to be established without conducting
any further mechanistic studies. An Ames test, an in vitro

MNT accompanied by centromeric FISH analysis, and a
rat MNT with FISH analysis [22] were chosen as the
studies for regulatory application. If γH2AX had not
been evaluated at the early stage, the candidates would
have been developed without ruling out the risk that
the compounds were clastogenic. The γH2AX evaluation
contributed to rapid drug development with reduced risk
of candidates being withdrawn.

Use of γH2AX in non-clinical studies
γH2AX has been used as a DSB biomarker for around a
decade in clinical studies, particularly when developing
chemotherapeutic agents [10]. Recently, γH2AX was
utilized in Phase 1 or 2 studies, such as for a PARP in-
hibitor [23], an apoptosis activator [24], a Wee1 kinase
inhibitor [25], an alkylating agent [26], and a checkpoint
kinase 1 (Chk1) inhibitor [27]. It is, therefore, clear that
γH2AX evaluation is useful for clinical studies, regardless
of the MoA of the drug candidates. Contrary to the wide-
spread use in clinical studies, γH2AX detection in in vivo
non-clinical studies has not been reported. Apart from its
use in clinical drug development, γH2AX was reported to
be a useful bio-dosimeter in fundamental radiotherapy

Fig. 3 In this case from the late screening stage, 6 pharmacologically promising compounds, from which the final candidate for GLP studies was
to be selected, all showed positive in the MNT in vitro screening in TK6 cells, which meant that a critical decision-making point was whether the
compounds were aneugenic or clastogenic. The conventional strategy would use an in vitro FISH analysis with centromeric DNA probes as the
next step, but because the FISH assay is laborious and time-consuming, practically speaking only one or two compounds would be investigated.
Therefore, development would have to continue without investigating the risk of clastogenicity in all of the compounds. On the other hand, the
advanced strategy includes measuring γH2AX induction in TK6 cells by FCM. As a result, all the 6 compounds were found to be aneugens prior
to conducting FISH analysis; therefore, the γH2AX assay could effectively reduce the risk that the compounds would be revealed to be clastogens
in the later FISH analysis
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research in rhesus macaques [28] and in canines [29],
which clearly suggests that γH2AX is available for use in
experimental animal models. Since the clinical studies and
experiments in large-animal models commonly use per-
ipheral lymphocytes or leukocytes as target cells for
γH2AX evaluation, the small volume of blood that is
sampled in rodent models might be a limitation in non-
clinical models. On the other hand, evaluating γH2AX
in rats with IHC has been proposed for evaluating photo-
toxicity [30] or carcinogenicity [31]. The most validated
in vivo test system to detect DSB in rats is the comet assay
[12, 32]; therefore, the advantage of in vivo γH2AX evalu-
ation is realized when the assay obtains biological infor-
mation that cannot be provided by comet assays.

Case 3: A trial example of detecting DSBs in rat male germ
cells in vivo
The following is an example of establishing an in vivo
γH2AX evaluation method in male germ cells in rats
(Fig. 4). Generally, genotoxicity in germ cells is evaluated

from alternative data obtained in somatic cells [33], but
if the germ cells are more vulnerable than the somatic
cells to the test chemicals, then we cannot rule out the
possibility that genotoxicity in germ cells may be over-
looked. Another option to detect DSB in germ cells is
the comet assay, but because of a high background value
in male germ cells, this assay needs further modifications
[34]. Therefore, none of the test systems that detect
DSB in germ cells have been validated so far [33]. Con-
sequently, we are trying to establish a test method that
uses IHC to detect DSB in male rat germ cells. Fig. 4
shows the DSBs detected as foci of γH2AX in the testis
of a rat treated with mitomycin C (MMC), which is a
DNA cross-linking agent that induces DSB. In this study,
physiological induction of γH2AX not related to exogen-
ous chemical exposure was detected in spermatogonia
and spermatocyte (pre-leptotene and leptotene stages)
and XY-body (sex vesicle), as previously reported [35, 36].
On the other hand, an apparent increase in γH2AX foci
was detected in the MMC-treated rats. The data suggested

a b

Fig. 4 Typical images of γH2AX-stained seminiferous tubules at stage I to VIII of the seminiferous cycle in rats. Images of the seminiferous tubules of a
MMC-treated rat (a) and a vehicle-treated rat (b). Male rats (RccHan™:WIST) were intravenously treated with saline (vehicle) or MMC at 2 mg/kg/day for
2 consecutive days and the testes were obtained 24 h after the last dose. The testes were fixed with 4% paraformaldehyde, and histopathological
specimens were prepared. The specimens were stained immunohistochemically with anti-γH2AX antibody (Abcam) and with hematoxylin and eosin (HE).
Magnified images are shown in boxes below. γH2AX foci in spermatids or pachytene spermatocytes are shown (red arrows). Spermatocytes (pre-leptotene
or leptotene), spermatogonia, and XY-bodies (sex vesicles, indicated with blue arrows) in pachytene spermatocytes are stained due to spontaneous
physiological phosphorylation of H2AX, as previously reported [35, 36]
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that visualizing γH2AX foci by IHC is a feasible way to
detect DSB in rats. Further studies for optimization and
validation will be needed.

Perspectives
In the present review, we summarized examples of apply-
ing γH2AX to non-clinical drug development and also de-
scribed how the use of γH2AX to detect DSB could be
further expanded. In the clinical study stage, a number of
reports have already been published, and detection of
γH2AX in peripheral lymphocytes or leukocytes will con-
tinue to be used as the standard method. In the early
screening stages of drug development, the in vitro evalu-
ation of γH2AX will also continue to be very effective, and
combining its data with that from pre-existing in vitro
genotoxicity tests, such as the in vitro MNT, makes it pos-
sible to obtain mechanistic information. However, at the
present time, there are no standard protocols for selecting
cells, detection methods, evaluation criteria, and so on;
therefore, protocols need to be standardized and validated
to build guidelines. As for non-clinical in vivo studies, no
substantial examples of their use in drug development
have been reported, so establishing feasible methodologies
will be the next hurdle. The use of γH2AX could be ex-
panded further to evaluate DSB induction in organs to
which the comet assay cannot be applied or to improve
predictions of carcinogenicity. One of the remarkable fea-
tures of γH2AX is that one focus represents one DSB,
which means γH2AX could be a quantitative marker of
DNA lesions, which would make it useful to assess the
risk of carcinogenicity quantitatively.

Conclusion
γH2AX is beginning to be used as a tool for evaluating
genotoxicity in drug development, both for screening and
for mechanistic analysis. It is expected to contribute to
rapid drug development and to remove the risk of with-
drawing valuable drug candidates unnecessarily. On the
other hand, there is no accumulated experience of its use
in in vivo evaluation at the non-clinical stage of drug
development. Considering its success in clinical studies,
the use of γH2AX in in vivo non-clinical studies would
provide valuable information that cannot be obtained
by pre-existing methods. Assays that detect γH2AX are
expected to pave the way to a new era in the assessment
of genotoxicity and carcinogenicity.
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