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Does the prenatal bisphenol A exposure
alter DNA methylation levels in the mouse
hippocampus?: An analysis using a high-
sensitivity methylome technique
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Abstract

Background: There is still considerable debate about the effects of exposure to bisphenol A (BPA) an endocrine
disrupter at low doses. Recently, many studies using animal models have shown that prenatal BPA exposure
induces behavioral and neuronal disorders due to epigenetic changes in the brain. However, striking evidence of
epigenomic changes has to be shown.

Methods: To investigate whether low-dose BPA exposure in the fetal stage can alter CpG methylation levels in the
central nervous system, the hippocampus of the inbred C57BL/6 J mouse as the target tissue was collected to
detect alterations in CpG methylation levels using a highly sensitive method of genome-wide DNA methylation
analysis, methylated site display–amplified fragment length polymorphism (MSD-AFLP).

Results: BPA showed the sex-hormone like effects on male reproductive organs. Although we examined the
methylation levels of 43,840 CpG sites in the control and BPA (200 μg/kg/day)-treated group (6 mice per group),
we found no statistically significant changes in methylation levels in any CpG sites.

Conclusions: At least under the experimental condition in this study, it is considered that the effect of low-dose
BPA exposure during the fetal stage on hippocampal DNA methylation levels is extremely small.
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Background
Bisphenol A (BPA), an endocrine disruptor, has still been the
focus of attention of scientists in the field of environmental
health since the last century. Even today, many researchers
in field of hygiene and environmental health science are
investigating exposure level in human population [1, 2], and
reporting studies focusing on mechanistic aspects [3–5]. An
initial study found that BPA monomer released from a poly-
carbonate dish has an estrogenic activity in a cell culture

study [6]. Subsequently, in experimental animal stu-
dies, exposure of pregnant animals to BPA at a low
doses (2–20 μg/kg) altered the development of male
reproductive organs such as the prostate [7–9]. It was
also reported that the sperm count decreased in adult
male rats even at a low dose of BPA exposure
(20 μg/kg/day) [9]. This dose was comparable to the
maximum exposure levels (375–857 ng/kg/day) for in-
fants [10]. Subsequently, similar experiments on a
low-dose of BPA exposure were performed by re-
search groups associated with some industrial com-
panies [11–13]. However, they failed to reproduce the
above described results. Furthermore, the rat two-
generation and three-generation reproductive toxicity
studies carried out by independent groups did not
detect changes in the reproductive organs by BPA
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diet throughout the experiments [14, 15]. These in-
consistent conclusions brought the story of BPA into
complex.
After a while, with the focus of studies shifting away

from reproductive toxicity, a number of studies started to
show that low-dose BPA exposure in the perinatal period
affected behavioral and brain development [16–18]. In
particular, the effects of low-dose BPA exposure on the
hippocampus were observed in many studies. BPA was
found to decreased hippocampal spine number as induced
by estrogen in the African green monkey (Chlorocebus
aethiops sabaeus) [19], inhibit acetylcholine production in
mice [20], and reduce the spine density in the mouse CA1
region [21], suggesting that perinatal BPA exposure may
cause developmental disturbance.
Such effects of BPA can be regarded as the Developmental

Origins of Health and Disease (DOHaD), that is fetal/neo-
natal environmental factors are the causes of diseases after
maturation [22–24]. It is hypothesized that exposure to en-
vironmental factors changes epigenomic states, such as
DNA methylation levels, which remain after birth
[25, 26]. Furthermore, many challenging studies re-
ported that gestational exposure to environmental
chemicals, such as vinclozolin and arsenite, causes in
epigenetic transgenerational changes in rodents [27–
29]. Now the chemical-induced epigenomic alteration
is extremely controversial issue not only in DOHaD
studies but also in general biology concerning evolution
[30]. In our series of environmental epigenetics studies,
we found that a single and low dose of 2,3,7,8-tetrachloro-
dibenzo-p-dioxin induced hypomethylation of CpGs in
Cyp1a1 gene promoter region in mouse liver [31]. This
hypomethylation was induced by adulthood exposure, but
also by in utero exposure [32]. Thus, we convinced that a
low level of environmental pollutants causes the alterna-
tion of DNA methylation status.
Indeed, several animal studies have shown that

prenatal exposure to BPA causes epigenetic changes
[33–38]. However, there are only a few studies using
a sufficient number of inbred animals for comparison
and/or by genome-wide DNA methylation analysis.
Recently, we have developed a technique called meth-
ylated site display-amplified fragment length poly-
morphism (MSD-AFLP) analysis, which is a sensitive
and affordable method of CpG methylation profile
analysis [39]. MSD-AFLP analysis is cost-effective be-
cause multiple samples can be analyzed at the same
time. MSD-AFLP analysis is also a very sensitive tech-
nique because it can detect slight changes in DNA
methylation levels. Therefore, in this study, a low-dose
BPA (200 μg/kg/day) was administered to pregnant
B57BL/6 J mice and the changes of DNA methylation
level in the hippocampus of offspring were detected by
MSD-AFLP analysis.

Methods
Reagents
The reagents and materials used in this study were as
follows. BPA and corn oil were purchased from Wako
Pure Chemical Industries (Osaka, Japan). T4 DNA ligase
and restriction enzymes Hpa II, Msp I, Sbf I were from
New England Biolabs (MA, USA). AllPrep DNA/RNA
mini kit was from Qiagen (Hilden, Germany). Oligonu-
cleotides were from Operon (Alameda, Calif., USA) and
streptavidin-coated magnetic beads (Dynabeads M-280
Streptavidin) were from Dynal (Oslo, Norway). TITAN-
IUM Taq DNA polymerase was from Takara Bio
(Kusatsu, Japan) and LightCycler® 480 SYBR Green I
Master was from Roche (Diagnostics GmbH, Mannheim,
Germany). POP-7™ Polymer, GeneScan™ 500 LIZ® Size
Standard and BigDye® Terminator v3.1 Cycle Sequencing
Kit were from ThermoFisher Scientific Inc., (San Diego,
CA, USA).

Animals and treatments
Pregnant C57BL/6 J mice were purchased from CLEA
Japan (Tokyo, Japan). The mice were bred at temperature
of 23 °C, in 12/12 h light/dark cycle (animal facility, 08: 00–
20: 00). Laboratory rodent feed (Lab MR stock, Nosan,
Yokohama, Japan) and distilled water were provided ad libi-
tum. BPA in vehicle (corn oil) or vehicle only was orally ad-
ministered for 12 consecutive days at a dose of 200 μg/kg/
day from the 6th to 17th days of gestation (GD); (Fig. 1).
Pup mice were culled to 5 males and 3 females on postnatal
day 9 (PND 9) and maintained under the same conditions.
Body weight and anogenital distance (AGD) were measured
from PND 0 to PND 49. Male (PND 84) and female (PND
87) mice were killed by cervical dislocation. Body weight
and weights of some tissues [liver, heart, kidney, urogenital
complex (UGC), testes, and uterus] were measured. The
hippocampus was dissected on ice, stored at − 80 °C, and
used for DNA methylation analysis. The animal experiment
protocol was approved by the Animal Care and Use Com-
mittee of the University of Tokyo (I-P11–015).

MSD-AFLP
MSD-AFLP analysis was performed in accordance with
our previous report [39]. Briefly, genomic DNA was iso-
lated from the male pup hippocampus using the AllPrep
DNA/RNA Mini Kit. Genomic DNA (100 ng) was
digested with the primary restriction enzymes Sbf I and
Msp I, and then ligated using adaptor A (Upper, b-TCC
GAC TGG TAT CAA CGC AGA GTA CTA GAG TTG
CA; Lower, p-ACT CTA GTA CTC TGC GTT GAT
ACC AGT CGG A; here, b indicates 5′-biotiylation and
p, 5′-phospholation). The ligated DNA fragment was
digested with methylation-sensitive Hpa II. After the
ligation reaction of adaptor B (Upper, AAT GGC TAC
ACG AAC TCG GTT CAT GAC C; Lower, p-CGT
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GTC ATG AAC CGA GTT CGT GTA GCC ATT), pre-
PCR was performed using adapter-specific primers (For-
ward, AAT GGC TAC ACG AAC TCG GTT CAT GAC
ACG G; Reverse, TCC GAC TGG TAT CAA CGC
AGA) to amplify only the genomic DNA fragments that
have methylated CpG at the end. The pre-PCR amplicon
(MSD library) was subjected to selective PCR using 256
primer sets (Forward, f-AAT GGC TAC ACG AAC
TCG GTT CAT GAC AII INN; Reverse, AGA GTA
CTA GAG TTG CAG GNN; here, f means 5′-6-carbo-
xyfluorescein (6-FAM) conjugation; I, inosine). The
product of selective PCR was electrophoresed using a
capillary sequencer to obtain an AFLP chart.

GFDB analysis
The genomic position was predicted from the AFLP
peak chart using the Genome DNA Fragment Database
(GFDB) system. GFDB can simulate the MSD-AFLP
procedure of genomic DNA cleavage with any restriction
enzyme or any selective PCR [39].

MSRE–PCR
Methylation-sensitive restriction-enzyme-dependent PCR
(MSRE-PCR) analysis of two CpGs was carried out as de-
scribed in our previous study {Amenya, 2016 #432}. The
following primers were used in this study: Chr 4:
35339023 (Forward, TCA CTC TTC ACC TGC AGG
AAG; Reverse, GCT GTC ACT CTG TGC TCT TCT)
and Chr X: 74707008 (Forward, CTG CTT TGC TGC
TCA GAG TTT; Reverse, CCC GAG TCC TGA GAT
TAA AGG). Purified genomic DNA (100 ng) was divided
into two portions. One portion was digested with Hpa II
and the other was not digested. Both were subjected to
quantitative PCR analysis using Light Cycler 480 and the
methylation level of CpG was calculated as the ratio of
target copy number from nondigested DNA to that from
Hpa II-digested DNA.

Statistical analysis
The significance of differences in the tissue weight and
MSRE-PCR measurement analyzed by Student’s t-test.

p-value less than 0.05 was considered statistically
significant. The significance of differences in methyla-
tion level between groups was analyzed by adjusted
p-value (q-value, false discovery rate (FDR)) calculated
with Benjamini–Hochberg (BH) correction after Student’s
t-test using R statistical software. Statistical probabilities of
FDR less than 0.05 were considered significant. Hierarchical
clustering analysis (HCA) and principal component analysis
(PCA) of methylation patterns were performed using
Euclidean distance, and the unweighted pair grouping
method using arithmetic mean (UPGMA) was carried out.
The Kyoto Encyclopedia Genes and Genome (KEGG) en-
richment analysis was performed using Gene Set Enrichment
Analysis (GSEA) software.

Results
Reproductive outcome
Prenatal BPA exposure did not significantly affect litter size
or sex ratio compared with controls (Additional file 1: Table
S1). In both sexes, the BPA-exposed group showed no effect
on body weight or AGD from birth to PND 49 (Additional
file 1: Figure S1). However, BPA exposure significantly
decreased the UGC weight of male on PND 84 (Table 1).
There were no significant differences in other tissues.

Gestation

GD6 GD17

Birth

Daily dose of BPA
(0 or 200 µg/kg/day)

Dissection
(Cont, dam=5; BPA, dam=6)

Culling

PND 9 PND 49
PND 84 (male) 
PND 87 (female)

Fig. 1 Experimental design of prenatal BPA exposure to mice. Vehicle (corn oil) or BPA was orally administered to female C57BL/6 J mice during
gestation at a dose of 200 μg/kg/day daily by gavage from GD 6 to GD 17. Pups were eliminated to be of the same number per mother on PND
9. Body weight and AGD were measured from PND 0 to PND 49. Male (PND 84) and female (PND 87) mice were sacrificed by cervical dislocation

Table 1 Effects of prenatal BPA exposure on tissue weight of
mice at dissectiona

Control BPA

Male (n = 24) Female (n = 14) Male (n = 19) Female (n = 12)

Liver 4.340 ± 0.063 5.703 ± 0.284 4.231 ± 0.066 5.183 ± 0.196

UGC 1.030 ± 0.015 N/A 0.941 ± 0.026* N/A

Testis 0.764 ± 0.012 N/A 0.743 ± 0.014 N/A

Uterus N/A 0.686 ± 0.036 N/A 0.567 ± 0.083

Heart 0.576 ± 0.014 0.514 ± 0.011 0.573 ± 0.013 0.501 ± 0.012

kidney 1.138 ± 0.017 1.158 ± 0.019 1.138 ± 0.014 1.146 ± 0.017
a, Tissue weight data was expressed as percentage per body weight
N/A, not available
Data were expressed as means ± SE. Statistically significant difference
between means from control group was analyzed by t-test (*: p < 0.05)
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Overall effect of BPA exposure on CpG methylation
We investigated the effects of prenatal BPA exposure on
the CpG methylation profile of the hippocampus in male
pups by MSD–AFLP analysis (Additional file 1: Figure S2).
A total of 43,840 CpG data were obtained by using 256 se-
lective primer sets. The mean methylation levels were 59.5
± 0.1% in the control group and 59.0 ± 0.1% in the BPA-
exposed group (p = 0.22); (Fig. 2). There was no significant
difference between control and BPA samples in the HCA
(Fig. 3). Moreover, PCA showed no clusters and large vari-
ances of both control and BPA groups (Fig. 4). These obser-
vations suggest that prenatal BPA exposure hardly affects
DNA methylation in the mouse hippocampus.

Statistical analysis for possibility of BPA-induced change
in CpG methylation
We analyzed the significance of differences in methylation
level between groups by q-value calculated with BH correc-
tion after Student’s t-test using all CpGs data determined
by MSD-AFLP to explore possibility of BPA-induced
changes. However, we detected no CpGs showing less than
0.05 of q-value of FDR. Figure 5 is a volcanic plot of q-value
of FDR and fold of changes by BPA exposure. We found
only three CpGs shows the lowest q-value of FDR (q = 0.24,
−log(q-value) = 0.620) out of 43,840 CpGs. The genomic
positions of three CpGs predicted by using the GFDB sys-
tem were shown in Table 2. Using the genomic DNA sam-
ples, in order to examine if fold of changes detected by
MSD-AFLP are significant, we performed MSRE-PCR ana-
lysis. Since another Hpa II site is located on immediately
nearby the CpG (Chr 5: 137753995), it was impossible to
design primers that are amplifiable in MSRE-qPCR. There-
fore, we examined the remaining only two CpGs (Chr 4:
35339023 and Chr X: 74707008). Although similar trends
of difference between control and BPA in both CpGs

shown in MSD-AFLP analysis were detected, neither of the
two CpGs showed significant difference in the MSRE-PCR
analysis (Additional file 1: Figure S3).

The KEGG enrichment analysis of CpG methylation level
The enrichment analysis of CpG methylation level on
the intragenic region and promoter region (5 kb
upstream from TSS) was performed to examine if statis-
tical difference is detected in KEGG pathway (Additional
file 1: Table S2). The hypermethylated CpGs in BPA ex-
posure were tended to highly enrich in the pathway of
N-Glycan Biosynthesis (NES = 1.600; FDR = 0.77). On
the other hands, the hypomethylated CpGs in BPA
exposure were tended to highly enrich in the pathway of
Histidine Metabolism (NES = 1.602; FDR = 0.917). How-
ever, the minimum FDR was 0.776, no pathway with sig-
nificantly different methylation level was detected
according to the criteria FDR < 0.05.

Discussion
In this study we investigated whether prenatal low-dose
BPA exposure causes epigenomic changes in the cerebral
hippocampus. Our study showed that the weight of the
male UGC consisting of three tissues, i.e., the prostate,
seminal vesicle, and urethra, was significantly reduced.
Although this observation is in contrast to a previous re-
port on prostate development [8], our experiment also
showed sex-hormone-like activity in pups with maternal
BPA exposure. Therefore, we focused on the hippocam-
pus, which is the part of the central nervous system that
is thought to be most strongly affected by BPA, as
shown by recent studies, and performed MSD–AFLP
analysis which is a new method that can detect genome-
wide CpG methylation level changes with a difference in
the methylation level of less than 5% and a variation rate
of the methylation level of less than 10% in an inter-
tissue comparison experiment [39]. However, in this
study, no statistically significant differences in methylation
level between the control group and the BPA-exposed
group were detected in all CpGs (43,840) analyzed in the
hippocampus.
The effects of BPA exposure on CpG methylation level

in genomic DNA in the brain and gonads have been re-
ported. BPA at a low dose (20 μg/kg) was administered to
pregnant ICR/Jcl mice and the methylation level changes
in the forebrain of the fetus was analyzed by the genome-
wide restriction landmark genomic scanning (RLGS)
method [37], which showed that the methylation levels of
48 CpGs were altered. A low dose BPA (10 μg/kg)
injection to pups of Sprague-Dawley (SD) rat has also been
reported to lead to the hypomethylation of the phospho-
diesterase type 4 gene in the prostate and increase suscepti-
bility to 7,12-dimethylbenz[a]anthracene (DMBA)-induced
prostate carcinogenesis [35]. On the other hand, in utero
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Fig. 2 Histogram of methylation levels of all CpGs detected by
MSD-AFLP analysis. Blue and red lines indicate the mean methylation
levels in the control and BPA-exposed groups
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and lactational exposure of BPA (0.05, 7.5, 30 and 120 mg/
kg/day, by oral) to the mother rats of inbred Fisher 344 strain
did not result in the DMBA-induced carcinogenesis of the
prostate [40]. The urinary excretion rate of BPA were 21%
and 70%, and the fecal excretion rates of BPA were 42% and
50% in SD and Fisher 344 rats, respectively [41]. Further-
more, the absorption, distribution, metabolic rate, and

excretion rate (ADME) vary depending on the rat strain.
Therefore, differences in ADME values among strains may
be reflected in blood BPA level and may have affected the ex-
perimental results. Additionally, there is an argument that
closed colonies such as ICR mice and SD rats show genetic
diversity within colonies, resulting in false positives data that
occasionally occur due to genetic diversity that may arise
even by simply dividing pups into two groups [42]. Thus, it
is preferable to use inbred strain animals to exclude genetic
variation among individuals in the analysis of epigenomic
changes.
As an example, when using inbred Avy mice, it has been

reported that prenatal BPA exposure (50-mg BPA/kg diet)
decreased the CpG methylation levels of the transposon
sequence in Agouti by about 10% [33]. Agouti determines
body hair color and the inserted transposon methylation
negatively regulates gene expression. Therefore, they con-
cluded that the yellow hair of Avy mice changed into
brown due to this hypomethylation. However, they did
not study whether there was any alteration in other genes.
Using inbred BALB/c mice, there was a report that
prenatal exposure of BPA (200 μg/kg/day, by oral) hyper-
methylated the transcriptional regulatory region of the
hippocampal neurotrophic factor (BDNF) of the males
and consequently decreased the mRNA expression level
[36]. Additionally, they also analyzed using free DNA in
blood and interestingly showed that brain BDNF methyla-
tion levels correlate with those of blood DNA [36]. The
levels of 17β-estradiol and testosterone and the ratio of

Control
BPA

Fig. 3 Hierarchical clustering analysis (HCA) of the effects of BPA. HCA of normalized methylation patterns of each sample using Euclidean
distance and weighted pair grouping method using arithmetic mean (UPGMA)

Control
BPA

Fig. 4 Principal component analysis (PCA) using MSD-AFLP data.
Control, red circle (n = 6); BPA, blue circle (n = 6). PCA showed large
variances of both control and BPA groups with no clusters
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these two sex hormones were different between mouse
strains [43]. The difference in the endocrine system be-
tween C57BL/6 J and CBA/Lac mice appears to affect the
activity of endocrine disruptors, such as BPA. In addition,
although 17β-estradiol had been used to positive control
in the studies of effect for prenatal BPA exposure of SD
rat offspring on increase DMBA-induced prostate carcino-
genesis [35], neonatal exposure of 17β-estradiol had no ef-
fects on mutagenicity of DMBA in reproductive tissues of
adult Big Blue transgenic mice [44]. Thus, the difference
in genetic background may change the effects of BPA. Al-
though we analyzed 43,840 CpGs in this study, which are
approximately 0.3% out of the total 20,000,000 CpGs in
mouse genome, we were unable to detect statistically sig-
nificant changes in CpG methylation levels, which might
be due to the stability of the methylated CpG in the
C57BL/6 J mouse hippocampus against small amount of

environmental chemicals. If further analysis is performed
with a wider coverage, it may be possible to detect signifi-
cant BPA-specific methylation level alterations even in the
C57BL/6 J hippocampus.

Conclusions
In this study, we investigated whether BPA alters CpG
methylation levels in the mouse hippocampus. Despite
the use of MSD–AFLP analysis, which is a high-
precision and highly sensitive analytical method, no
changes in methylation levels as the effect of low-dose
BPA exposure were detected. Therefore, although fur-
ther analysis is necessary, we concluded that under the
experimental conditions of the present study, the effects
of prenatal BPA exposure on the hippocampal DNA
methylation are extremely small.
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Table 2 The genomic positions of three CpGs showing minimum q-value predicted by using GFDB

Chr. Positiona Gene name Methylation level (%) log ratiob q-value

Cont (n = 6) BPA (n = 6)

5 137,753,995 Trip6 18.21 ± 0.79 26.85 ± 0.67 0.17 0.24

4 35,339,023 9.3kbp up stream of RP23-307 M2.4 29.36 ± 0.34 34.67 ± 0.52 0.07 0.24

X 74,707,008 4.4kbp down stream of RP23-238B14.1 80.53 ± 1.38 65.66 ± 1.35 −0.09 0.24
a, Chromosomal nucleotide position of methylated cytosine
b, The ratio means fold of change (BPA/control)
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Additional file 1: Table S1. The pup number and sex ratio. Figure S1.
Effect of prenatal BPA exposure on body weight and anogenital distance
(AGD). Figure S2. A typical MSD-AFLP peak chart after electrophoresis
obtained by a selective primer set. Figure S3. MSRE-PCR analysis of
representative CpGs (Chr 4: 35339023 and Chr X: 74707008) showing the
minimum q-value obtained from the MSD-AFLP data. Table S2. The
KEGG enrichment analysis of the effect on the DNA methylation.
(DOCX 289 kb)
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