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Abstract

Background: Abasic sites are formed spontaneously and by nucleobase chemical modifications and base excision
repair. A chemically stable abasic site analog was site-specifically introduced into replicable plasmid DNAs, which
were transfected into human U2OS cells. The amplified DNAs were recovered from the cells and used for the
transformation of a bacterial indicator strain.

Results: Large deletion mutations were induced by the analog, in addition to point mutations at the modified site.
No apparent sequence homology at the deletion junctions was found.

Conclusion: These results suggested that the large deletions induced by the abasic site analog are formed by
homology-independent events.
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Background
Chemical modifications of nucleic acids have severe effects
on organisms because they disturb replication, transcrip-
tion, and translation, resulting in mutagenesis, carcinogen-
esis, and cell death. Various DNA lesions are formed
spontaneously and by mutagens, such as reactive oxygen
species and ultraviolet light [1–5]. An abasic (apurinic/apyr-
imidinic, AP) site is formed by the spontaneous hydrolysis
of the N-glycosyl bonds of DNA, and this hydrolysis is
accelerated by the chemical modifications of bases [6].
Moreover, this DNA lesion is produced as an intermediate
of base excision repair when a monofunctional DNA glyco-
sylase, such as uracil DNA glycosylase, acts on a damaged
base. Approximately 10,000–50,000 abasic sites are report-
edly present per mammalian cell under normal physio-
logical conditions [7, 8]. Thus, the abasic site is one of the
important DNA lesions causing mutagenesis/carcinogen-
esis, due to its abundance and loss-of-base character.
In general, the incorporation of a 2′-deoxyribonucleo-

tide opposite the abasic site and its analogs by mammalian
replicative DNA polymerases (pols) is inefficient. For

example, in vitro DNA synthesis by human DNA pol ε is
severely blocked at the nucleotide preceding an abasic site
analog [9]. Instead, translesion synthesis DNA pols are
considered to conduct the bypass of the DNA lesion [10].
Due to the lack of a nucleobase, DNA pols “misincorpo-
rate” nucleotides opposite the DNA lesion. In living mam-
malian cells, various point mutations are induced by the
abasic site (analog), depending on its opposite bases,
flanking sequences, and cell type [11–15].
Previously, large deletion mutations were found when

shuttle vectors containing ultraviolet-induced DNA lesions,
cyclobutane and 6–4 thymine-thymine dimers, were repli-
cated in simian cells [16]. Since these dimers block nucleo-
tide incorporation by replicative DNA pols as with the abasic
site [17], it may also cause large deletion mutations in
addition to point mutations. In this study, we focused on de-
letion mutations upon the transfection of a shuttle plasmid
DNA bearing a chemically stable, frequently used tetrahydro-
furan analog (THF) of the abasic site. The analog actually
caused large deletion mutations in living human cells, with-
out any apparent homology at the deletion junctions.

Methods
Materials
The oligodeoxyribonucleotides (ODNs) used for plasmid
construction and sequence analysis are listed in Table 1.
ODN-1 and ODN-2 were previously synthesized [18, 19].
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ODN-3 and ODN-5 containing THF, and ODN-4 con-
taining G instead of THF, were synthesized in this study.
These ODNs were chemically phosphorylated on the sup-
port and purified by HPLC, as described previously [20].
PCR primers were purchased from Hokkaido System Sci-
ence (Sapporo, Japan) and Eurofins Genomics (Tokyo,
Japan) in purified forms. Escherichia coli KS40/pOF105,
used as the indicator strain of the supF mutants, was pro-
vided by Professor Tatsuo Nunoshiba of the International
Christian University [21].

Plasmid DNA containing THF
The double-stranded shuttle vectors containing THF
were prepared from the single-stranded forms of
pZ189-T_E107K/D402E (formerly pZ189-107 K/402E)
and ODN-3 or ODN-5 by enzymatic reactions catalyzed
by T4 DNA pol and T4 DNA ligase, as described [22,
23]. To obtain highly pure DNAs, they were treated with
Plasmid-Safe ATP-Dependent DNase (Epicentre, Madison,
WI, USA). The DNAs were purified with a PureLink PCR
Purification Kit (Thermo Fisher Scientific, Waltham, MA,
USA) to remove proteins, ODNs, and mononucleotides
before and after the DNase treatment. The plasmid DNAs
bearing G or 8-oxo-7,8-dihydroguanine (GO) were pre-
pared by the same procedures.

Transfection of plasmid DNAs and mutant frequency
determination
U2OS cells (5.0 × 104 cells) were cultured in Dulbec-
co’s modified Eagle’s medium, supplemented with 10%
fetal bovine serum. After 24 h, 100 ng (29 fmol) of
the plasmid DNA bearing THF was transfected with
Lipofectamine (Thermo Fisher Scientific), and the
cells were cultured for 48 h. The plasmid molecules
propagated in the U2OS cells was isolated by the Hirt
procedure [24]. The DNA was extensively digested by
DpnI to break down the unreplicated plasmid. E. coli
KS40/pOF105 cells were electroporated with the plas-
mid, and the supF mutant frequency was calculated
[21, 25]. The plasmids bearing G and GO, instead of
THF, were transfected as controls. The sequence of

the mutant supF plasmid was analyzed, using the
ODN-seq1 and ODN-seq2 primers (Table 1).

Results
Induction of large deletions by an abasic site analog in
the supF gene (experiment 1)
First, we incorporated THF into position 122 of the supF
gene. The mutational properties of other DNA lesions, GO

and O6-methylguanine, in this position have previously been
examined [18, 19, 26]. The plasmid bearing the unique THF
was prepared by enzyme reactions using ODN-3 (Table 1).
The DNA was transfected into human U2OS cells, recov-
ered from the cells, and introduced into E. coli KS40/
pOF105 cells. The numbers of colonies on the titer plate and
the selection plates containing nalidixic acid, streptomycin,
and X-gal were counted [21, 25]. Mutations in the supF gene
confer resistance to the two antibiotics and the lacZ−

phenotype to E. coli. The plasmid DNAs containing G and
GO, instead of THF, were used as controls.
The numbers of colonies on the titer plates, which

semi-quantitatively reflect the amounts of plasmid DNA
amplified in the U2OS cells, were comparable for all
progeny plasmids, indicating the similar replication effi-
ciencies of the G-, GO-, and THF-plasmids and THF re-
moval by DNA repair. The supF mutant cells formed
white or pale blue colonies on the selection plates. The
supF mutant frequency was calculated by dividing the
numbers of supF mutant colonies on the selection plates
by those of the total colonies on the titer plates.
The supF mutant frequency was 1.1 × 10− 3 when the

control plasmid containing G, instead of THF, was trans-
fected (Fig. 1A). This value was similar to the expected
one calculated by the error frequency of the DNA pol
used in the plasmid preparation and the length of the supF
gene, suggesting that a significant portion of the muta-
tions was due to nucleotide misincorporation during the
plasmid preparation [27]. The replacement of the G with
THF at position 122 greatly enhanced the supF mutant
frequency (1.2 × 10− 2). This value was much higher than
the mutant frequency for another major DNA lesion, GO.
We next analyzed the supF plasmids in the mutant

colonies (Tables 2 and 3). Previously, THF has been
shown to induce base-substitution mutations [15]. These
types of mutations were also found in the experiment.
THF➔C and THF➔T mutations were observed as tar-
geted substitutions in this study. In addition, a targeted
− 1 deletion was detected. Moreover, as we expected,
large deletion mutations were present among the mu-
tants. The frequencies of the large deletion mutations
were calculated as the products of the total supF mutant
frequencies and the ratios of the large deletions. The fre-
quencies were 4.8 × 10− 4 and 2.5 × 10− 3 in the G and
THF experimental groups, respectively. In the case of
GO, the frequency was 6.4 × 10− 4, indicating that not

Table 1 Oligodeoxyribonucleotides used in this study

Name Sequence (5′- > 3′)a

ODN-1 P-CGACTTCGAAGGTTCGAATCC

ODN-2 P-CGACTTCGAAGOTTCGAATCC

ODN-3 P-CGACTTCGAAGFTTCGAATCC

ODN-4 P-TCCGAAAGAATTGAGCGTCAGA

ODN-5 P-TCCGAAAGAATTFAGCGTCAGA

ODN-seq1 GGCGGTGCTACAGAGTTCTT

ODN-seq2 GCACCCAACTGATCTTCAGC
aF, O, and P represent THF, GO, and the phosphate, respectively

Suzuki et al. Genes and Environment           (2018) 40:24 Page 2 of 8



every DNA lesion induces large deletion mutations.
Thus, the abasic site analog, but not GO, caused large
deletions in human cells.

Induction of large deletions including the supF gene by
an abasic site analog located outside the gene
(experiment 2)
Next, we incorporated THF outside the supF gene, to
detect large deletion mutations more easily. The ana-
log was introduced into the site located 9 “bases”
downstream of the gene, which has a length of 162
bases. We named this site “position 171”, although it
is outside of the gene. Point mutations at this site
alone do not inactivate the supF gene, but large dele-
tions containing a part of the gene produce supF mu-
tants. ODN-5 was used for plasmid construction
(Table 1).
The supF mutant frequencies were 1.1 and 3.6 × 10− 3

when the plasmid DNAs without and with THF, respect-
ively, were transfected (Fig. 1B). Sequence analyses (Tables 4
and 5) and calculations of the large deletion frequency re-
vealed that THF also induced large deletions in this case:
the frequencies were 2.5 × 10− 4 and 2.8 × 10− 3 for the con-
trol and THF plasmid DNAs, respectively (P < 0.01, Stu-
dent’s t-test). Thus, we confirmed that the presence of the

abasic site analog induces large deletions.

Analysis of deleted sequences and junctions
Finally, we analyzed the deleted sequences and junctions. Se-
quence homology at the junctions of deleted regions should
be found, if the deletions occurred in a homology-dependent
manner. However, we did not find apparent similarity in any
case (Table 6). Thus, homology-mediated events were not in-
volved in the deletion formation.
Twelve mutants obtained in the THF (position 122) ex-

periment contained large deletions. Among them, position
122 was included in the deleted portions for 10 mutants
(Table 6). The other two lacked regions upstream of the
modified position. No large deletions downstream of the
supF gene retaining position 122 were found. Meanwhile,
position 171 was included in the deleted regions for 26
among the 41 deletion mutants derived from the
THF-plasmid (position 171). The other deletion mutants
lost the upstream portion of the modified position.

Discussion
In this study, we examined the large deletion mutations
induced by the abasic site analog THF in human cells.
Unsurprisingly, substantial fractions of the progenies of
THF-bearing vectors contained large deletions (Tables 3
and 5). In the case of THF at position 122 (experiment
1), most of the deleted regions were upstream of the
modified site, although the downstream deletion pro-
duces supF mutants and thus is detectable. Since THF
was introduced into the upper strand, the region corre-
sponding to the 5′-side of the lesion was lost. A similar
tendency was observed for THF at position 171 (experi-
ment 2), although the lesion was located downstream of
the supF gene and thus the deletion of the upstream re-
gion is essential to inactivate the gene.
When we consider replication, the 5′-side of the lesion

is equivalent to the downstream region of the opposite
site in the nascent strand. As described in the Introduc-
tion section, large deletion mutations were also induced
by cyclobutane and 6–4 thymine-thymine dimers in
mammalian cells [16]. Since the photodimers and THF
are replication blocking lesions, we hypothesize that the
inefficient bypass of THF causes the large deletion gen-
erated during replication.
Alternatively, the large deletion might be formed as a

byproduct of DNA repair. APE1 (APEX, HAP, Ref-1) is the
major apurinic/apyrimidinic endonuclease in human cells
[28–31]. THF is a substrate of APE1 [32] and the enzyme
incises DNA 5′ to THF, resulting in single-strand break
(SSB) formation. Op het Veld et al. reported that large dele-
tions were frequently observed in XRCC1-deficient Chinese
hamster cells, after a treatment with methyl methanesulfo-
nate [33]. Since the protein is involved in SSB repair and

Fig. 1 The supF mutant frequency in U2OS cells transfected with
plasmid DNA containing THF (a) at position 122 of the supF gene and
(b) outside of the gene (at “position 171”). Transfection experiments
were performed four times. Data are expressed as the means +
standard errors. *P < 0.05 vs. control plasmid (Student’s t-test)
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Table 2 Mutations detected in the supF gene (experiment 1)a

THF

11C- > A, 95C- > A, 101C- > T 1

39G- > GG, 101C- > T, 111C- > T 1

70C- > T, 71C- > T 1

73A- > C, 74G- > A 1

73G- > T, 118G- > A 2

74A- > C, 75G- > A 2

86G- > T, 91G- > A 2

86G- > T, 95C- > A, 101C- > T, 138C- > T, 147C- > T, 161C- > A 1

95C- > G 2

101C- > T, 125C- > G 1

121G- > C, 122G- > T 1

122G- > T 2

large insetion 1

large deletion 6

large deletion, 99A- > G 1

large deletion, large insertion 5

total colonies analyzed 30

GO

5G- > C, 85G- > T 2

5G- > A, 19C- > T, 27G- > A 1

5G- > A, 19C- > T, 27G- > A, 118G- > T 1

5G- > A, 27G- > T, 126G- > C 1

91G- > GG, 118G- > T, 126G- > A 1

95C- > G 1

96 T- > G 2

121G- > T 1

122G- > T 23

122G- > C 8

122 deletion 1

large deletion 7

large deletion, large insertion 1

total colonies analyzed 50

THF

5G- > C, 27G- > C, 33G- > A, 40G- > A, 73G- > C, 126G- > C 2

5G- > C, 27G- > A, 91G- > T 1

5G- > C, 26C- > A, 27G- > A, 112G- > T, 121G- > T 1

27G- > A, 73G- > A, 118G- > A 1

27G- > C, 65G- > T, 73G- > T 1

27G- > T, 73G- > C, 78G- > T, 118G- > A 1

73G- > C, 106G- > A 1

91 G- > A 112 G- > A 1

91G- > C, 112G- > A 1

91G- > A, 112G- > A, 126G- > C 1

95C- > A, 101C- > T 1

Table 2 Mutations detected in the supF gene (experiment 1)a

(Continued)

THF

117C- > G, 126G- > T 2

118G- > C 2

121GG- > T 1

122G- > AAGA 1

122G- > T 7

122G- > C 11

122 deletion 11

122G- > T, 127 deletion 1

large deletion 10

large deletion, 122G- > T 1

large deletion, large insetion 1

total colonies analyzed 60
aMutations detected in single colonies are represented. The sequence of the
upper strand is shown. The numbers of colonies are shown on the right side

Table 3 Spectra of mutations detected in the supF gene
(experiment 1)a

G GO THF

point mutations at position 122

G:C - > A:Tb 0 (0) 0 (0) 0 (0)

G:C - > T:Ac 3 (10) 23 (46) 9 (15)

G:C - > C:Gd 0 (0) 8 (16) 11 (18)

deletion 0 (0) 1 (2) 11 (18)

mutations at other positions

transition

A:T - > G:C 1 (3) 0 (0) 0 (0)

G:C - > A:T 16 (53) 8 (16) 17 (28)

transversion

A:T - > T:A 0 (0) 0 (0) 0 (0)

A:T - > C:G 3 (10) 2 (4) 0 (0)

G:C - > T:A 9 (30) 6 (12) 11 (18)

G:C - > C:G 4 (13) 4 (8) 19 (32)

small insertion (1–2 bp) 1 (3) 1 (2) 0 (0)

large insertion (> 2 bp) 6 (20) 1 (2) 1 (2)

small deletion (1–2 bp) 0 (0) 0 (0) 1 (2)

large deletion (> 2 bp) 12 (40) 8 (16) 12 (20)

others 0 (0) 0 (0) 2 (3)e

total mutations 55 62 94

total colonies analyzed 30 (100) 50 (100) 60 (100)
aAll data are represented as cases found (%)
bThe mutation corresponds to incorporation of TMP opposite G/GO/THF
cThe mutation corresponds to incorporation of dAMP opposite G/GO/THF
dThe mutation corresponds to incorporation of dGMP opposite G/GO/THF
eGG - > T at positions 121–122 and G - > AAGA at position 122
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the compound induces the N-methylation of nucleobases,
they hypothesized that the deletions could be caused by the
accumulation of SSBs during abasic site formation and the
subsequent incision of the lesions.
Simonelli et al. examined the mutagenic properties of the

abasic site in African green monkey COS-7 cells [34]. Al-
though they also found that large deletion mutations (8–
168 bases) were induced by the DNA lesion, no informa-
tion about the deletion junctions was reported. We de-
tected the absence of homology in the deletion junctions
we analyzed (Table 6) and concluded that the deletions
were due to homology-independent events, such as DNA
replication block and/or SSB formation, as described above.
A deaminated base, hypoxanthine, was previously shown

to cause an A➔G mutation in mammalian cells [35]. How-
ever, DeVito et al. recently reported that the DNA lesion in-
duced large deletions in human HEK293 and HCT116 cells
[36]. N-methylpurine DNA glycosylase excises this modified

base, leaving an abasic site [37]. Since hypoxanthine does not
seem to be a replication blocking lesion due to its structural
similarity to G, the abasic sites formed by the DNA glycosy-
lase possibly contributed to the deletion mutations, as
DeVito et al. discussed. In contrast, GO did not induce large
deletions in U2OS cells (experiment 1) although the major
repair enzyme OGG1 produces an abasic site. This discrep-
ancy might be due to balance of DNA glycosylase and apuri-
nic/apyrimidinic endonuclease activities. The amounts of the
repair proteins would depend on cell types and the abasic
sites formed by N-methylpurine DNA glycosylase might not
be efficiently removed in HEK293 and HCT116 cells. In line
with this possibility, GO induces large deletions in HCT116
cells [36]. The repair by monofunctional DNA glycosylases
possibly acts as a double-edged sword in cells.
In this study, we found THF➔C and THF➔T muta-

tions at position 122 (Table 3). These substitution muta-
tions seemed to be caused by dGMP and dAMP
incorporations, respectively, opposite the lesion. In con-
trast to E. coli, no clear rule of nucleotide incorporation
was present in mammalian cells [11, 15]. Interestingly,
the − 1 deletion at the THF site (5′-G-THF-T-3′) was
observed, in contrast to the previous reports. This muta-
tion might be triggered by dCMP incorporation opposite
THF, followed by mispairing of the 5′-flanking G and
the incorporated C after looping-out of THF. Alterna-
tively, it might be initiated by dCMP incorporation op-
posite the 5′-flanking G after looping-out of THF,
followed by the extension of the G:C pair.
The detection and quantitation of abasic sites are im-

portant research, and useful chemical probes have been

Table 5 Spectra of mutations detected in the supF gene
(experiment 2)a

G THF

transition

A:T - > G:C 2 (7) 0 (0)

G:C - > A:T 4 (14) 3 (6)

transversion

A:T - > T:A 0 (0) 1 (2)

A:T - > C:G 1 (4) 0 (0)

G:C - > T:A 13 (46) 4 (7)

G:C - > C:G 18 (64) 11 (20)

small insertion (1–2 bp) 1 (4) 8 (15)

large insertion (> 2 bp) 0 (0) 2 (4)

small deletion (1–2 bp) 0 (0) 1 (2)

large deletion (> 2 bp) 7 (25) 41 (76)

others 0 (0) 0 (0)

total mutations 46 71

total colonies analyzed 28 (100) 54 (100)
aAll data are represented as cases found (%)

Table 4 Mutations detected in the supF gene (experiment 2)a

G

5G- > C, 126G- > C 1

65G- > GAA, 71C- > G, 73GAGC- > CCTT, 78GC- > AA, 81A- > G,
85GGA- > ACG

1

70C- > A, 91G- > C 2

70C- > A, 95C- > G 2

91G- > T, 126G- > T 2

95C- > A 2

95C- > G 4

121G- > C 3

122G- > A 1

131C- > A 1

131C- > G 2

large deletion 7

total colonies analyzed 28

THF

5G- > A, 91G- > C 2

5G- > C, 73G- > C, 112G- > A 1

5G- > C, 27G- > T, 73G- > T, 91G- > T 1

63 deletion 1

73G- > C, 91G- > C 2

95C- > A 1

98A- > T 1

118G- > C 2

large insertion 2

large deletion 33

large deletion, small insertion 8

total colonies analyzed 54
aMutations detected in single colonies are represented. The sequence of the
upper strand is shown. The numbers of colonies are shown on the right side
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Table 6 Sequences of deletion junction

aThe sequence of the upper strand is shown. Deleted portion is shown in red
bA TACTGGCCTGCTCCCT sequence is present instead of the deleted sequence
cSubstitution at position 99 is shown in bold
dAn ATGCAGCGA sequence is present instead of the deleted sequence
eAn ATCAT sequence is present instead of the deleted sequence
fAn AG sequence is present instead of the deleted sequence
gAn AT sequence is present instead of the deleted sequence
hA CT sequence is present instead of the deleted sequence
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developed [38, 39]. Investigations of the mutational prop-
erties of abasic sites, as well as their quantitation, are ne-
cessary for understanding the contributions of this
important DNA lesion to mutagenesis, carcinogenesis,
aging, and neurodegeneration.

Conclusions
In conclusion, the abasic site analog THF induced large
deletion mutations in human cells. The lack of hom-
ology at their junction sites indicated that the deletions
are caused by homology-independent events. Investiga-
tions of their molecular mechanism are quite pivotal,
and further experiments are currently in progress.
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