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The failure of two major formaldehyde
catabolism enzymes (ADH5 and ALDH2)
leads to partial synthetic lethality in C57BL/
6 mice
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Abstract

Background: Exogenous formaldehyde is classified by the IARC as a Category 1 known human carcinogen.
Meanwhile, a significant amount of endogenous formaldehyde is produced in the human body; as such,
formaldehyde-derived DNA and protein adducts have been detected in animals and humans in the absence of
major exogenous formaldehyde exposure. However, the toxicological effects of endogenous formaldehyde on
individuals with normal DNA damage repair functions are not well understood. In this study, we attempted to
generate C57BL/6 mice deficient in both Adh5 and Aldh2, which encode two major enzymes that metabolize
endogenous formaldehyde, in order to understand the effects of endogenous formaldehyde on mice with normal
DNA repair function.

Results: Due to deficiencies in both ADH5 and ALDH2, few mice survived past post-natal day 21. In fact, the
survival of pups within the first few days after birth was significantly decreased. Remarkably, two Aldh2−/−/Adh5−/−

mice survived for 25 days after birth, and we measured their total body weight and organ weights. The body
weight of Aldh2−/−/Adh5−/− mice decreased significantly by almost 37% compared to the Aldh2−/−/Adh5+/− and
Aldh2−/−/Adh5+/+ mice of the same litter. In addition, the absolute weight of each organ was also significantly
reduced.

Conclusion: Mice deficient in both formaldehyde-metabolizing enzymes ADH5 and ALDH2 were found to develop
partial synthetic lethality and mortality shortly after birth. This phenotype may be due to the accumulation of
endogenous formaldehyde. No serious phenotype has been reported in people with dysfunctional, dominant-
negative ALDH2*2 alleles, but it has been reported that they may be highly susceptible to osteoporosis and
neurodegenerative diseases. It is important to further investigate these diseases in individuals with ALDH2*2 alleles,
including an association with decreased metabolism, and thus accumulation, of formaldehyde.
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Introduction
Various endogenous aldehydes exist in our human body.
Among such aldehydes, perhaps the most abundant al-
dehyde in vivo under physiological conditions is the
one-carbon carbonyl compound formaldehyde. It has
been reported that formaldehyde is produced in cells by
enzymatic reactions, such as oxidative demethylation
[1–4]. One function of endogenous formaldehyde is as a
single carbon source and a building block to make DNA,
RNA and proteins. On the other hand, exogenous for-
maldehyde is classified by the IARC as a known human
carcinogen. The carbonyl group of formaldehyde reacts
with amino moieties of DNA and proteins, causing gen-
otoxicity and impaired protein function. For the last two
decades, our research interest has been focused on en-
dogenous formaldehyde, and we have proposed that en-
dogenous formaldehyde is a causative agent of non-
infectious inflammation, including atherosclerosis [3],
and plays an important role in the human hereditary dis-
ease Fanconi anemia [5, 6]. Regarding the genotoxicity
of formaldehyde, we first demonstrated that chicken
DT40 B-lymphocytic cells deficient in the FANC/BRCA
pathways are sensitive to physiological levels of formal-
dehyde (LC50: ~ 5 μM) and the 2-carbon carbonyl com-
pound acetaldehyde at fairly high concentrations (LC50:
~ 2500 μM) [5, 7]. Intracellular formaldehyde is mainly
detoxified by cytosolic alcohol dehydrogenase 5 (ADH5,
Km = 0.12–6.5 μM) (Fig. 1) [8–11]. However, it has been
reported that chicken DT40 cells lacking ADH5 can
grow normally, and their sensitivity to exogenous for-
maldehyde is not different from wild-type cells [12]. In

addition, Adh5−/− mice developed by the Stamler group
are born and develop normally in both sexes [13]. The
long-term survival rate of Adh5−/− mice was also almost
the same as that of wild-type mice [14]. These results
suggest that there exist formaldehyde metabolism path-
ways that act as backup mechanisms for the ADH5 en-
zyme. Enzymes other than ADH5 related to the
detoxification of formaldehyde include (1) the cytosolic
alcohol dehydrogenase (ADH1, Km = 30,000 μM) (reduc-
tion) [15]; (2) the mitochondrial aldehyde dehydrogenase
2 (ALDH2, Km = 170–400 μM) (oxidation) [16, 17]; and
(3) cytochrome P450 2E1 (CYP2E1) (Km = 1100 μM)
(oxidation) [18]. Among them, ALDH2 with a relatively
low Km value is considered to be the major compensa-
tory enzyme for ADH5 (Fig. 1).
As with formaldehyde, the two-carbon carbonyl com-

pound acetaldehyde also exists as an endogenous alde-
hyde. However, acetaldehyde is more than100 times less
reactive and less toxic than formaldehyde [5]. Acetalde-
hyde is primarily metabolized by the mitochondrial
ALDH2 (Km < 1 μM) [19]. Similar to ADH5 deficiency,
DT40 cells deficient in ALDH2 can grow normally and
are as sensitive to acetaldehyde as wild-type cells [12].
Acetaldehyde metabolism is also backed up by a com-
bination of the following enzymes: ALDH1B1 (Km =
30 μM), ALDH1A1 (Km = 50–180 μM) [19], ALDH9A1
(Km = 40–50 μM), and perhaps ALDH1A2 (Km =
650 μM) [19–21]. These compensatory pathways may
explain why ALDH2-deficient mice and individuals are
born normally and do not exhibit any overt health is-
sues. In this study, therefore, we investigated the impact

Fig. 1 Endogenous formaldehyde metabolism. Endogenous formaldehyde is mainly detoxified via the ADH5 pathway. Formaldehyde is non-
enzymatically bound to GSH, oxidized by ADH5, and further metabolized to formic acid by FGH. ALDH2 exists as an enzyme that redundant to
the ADH5-dependent detoxification system. The biological significance of oxidation by other formaldehyde detoxification enzymes such as
CYP2E1 and ADH appears to be negligible
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of the deletion of both the major and compensatory
pathways of formaldehyde metabolism (ADH5 and
ALDH2) in DNA repair-proficient mice.

Materials and methods
Mouse husbandry and mouse genetics
All mouse experiments were approved by the Institu-
tional Animal Care and Use Committees review board at
the University of North Carolina at Chapel Hill and were
performed in accordance with federal guidelines. Mice
were housed in a pathogen-free, temperature- and light-
controlled animal facility under a 12-h light/dark cycle
and were provided standard food and water ad libitum.
Aldh2−/− mice in a C57BL/6 background and Adh5−/−

mice in a C57BL/6 background were obtained from Dr.
Toru Nyunoya (Lovelace Respiratory Research Institute,
USA) [22] and Dr. Jonathan Stamler (Case Western Uni-
versity, USA) [13], respectively. C57BL/6 mice were ori-
ginally purchased from The Jackson Laboratory and
bred in our animal facility. All mice used in the present
study were in a C57BL/6 background. Adh5−/− mice
were bred using Alpha Dri bedding due to their suscep-
tibility to dermatitis. We attempted to establish

Aldh2−/−/Adh5−/− mice by crossing Aldh2−/−/Adh5+/−

mice.

Behavior and organ weight
Behavior of Aldh2−/−/Adh5−/− mice and their heterozy-
gous counterparts in the mouse cage was recorded by
video and photograph immediately before euthanasia. At
post-natal day 25, Aldh2−/−/Adh5−/− mice and their
Aldh2−/−/Adh5+/− mice were euthanized by CO2 euthan-
asia. After weighing, blood was collected from the ab-
dominal vein. Livers, spleens, kidneys, brains, lungs,
hearts, and thymus were collected and organ weights
were measured.

Results and discussions
We attempted to generate C57BL/6 mice deficient in
both Adh5 and Aldh2 genes in order to examine the ef-
fects of endogenous formaldehyde in mice with normal
DNA repair function. We interbred mice to obtain
Aldh2−/−/Adh5−/− mice in a C57BL/6 background by
crossing Aldh2−/−/Adh5+/− mice. Almost no Aldh2−/−/
Adh5−/− survived past post-natal day 21. The number of
mice in the litter occasionally decreased within a few

Fig. 2 General appearance, body weight and organ weight of Aldh2−/−/Adh5−/− mice. a General appearance of 25-day-old Aldh2−/−/Adh5−/−
mice (white arrow) and Aldh2−/−/Adh5+/− and Aldh2−/−/Adh5+/+mice in a cage. b Body weight (mean ± SD) of Aldh2−/−/Adh5−/− mice (n =
2) and Aldh2−/−/Adh5+/− and Aldh2−/−/Adh5+/+ mice (n = 3). c, d Organ weight and relative organ weight (mean ± SD) of Aldh2−/−/Adh5−/−
mice (n = 2) and Aldh2−/−/Adh5+/− and Aldh2−/−/Adh5+/+ mice (n = 3)
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days of birth, suggesting early post-natal lethality in
some Aldh2−/−/Adh5−/− mice. Although the reason is
unclear, in one very rare case, Aldh2−/−/Adh5−/− mice
survived up to 25 days after birth. Two of the five litter-
mates were Aldh2−/−/Adh5−/− mice (two females), as
confirmed by genotyping, and three other animals were
Aldh2−/−/Adh5+/− (male and female) and Aldh2−/−/
Adh5+/+ (male) mice (Fig. 2a). Aldh2−/−/Adh5−/− mice
weighed only about 37% of that of Aldh2−/−/Adh5+/−

and Aldh2−/−/Adh5+/+ mice (Figs. 2a and b). There were
no significant abnormalities in their behavior (Video 1).
Small thymus was observed at necropsy after euthanasia.
It may also be related to Adh5−/− mice having fewer
number of CD4 single-positive thymocytes via apoptosis
[23]. Absolute organ weights of other organs were de-
creased in the Aldh2−/−/Adh5−/− mice, whereas, the rela-
tive organ weights were almost the same as those of wild
type except for the brain (Fig. 2c and d). Therefore, the
decreased absolute organ weights are probably due to
the secondary effects caused by weight loss. Based on
these results, Aldh2−/−/Adh5−/− animals seem to exhibit
a partial synthetic lethality or a phenotype that is lethal
during the pre-weaning period. This lethal outcome may
be result of an accumulation of endogenous formalde-
hyde in mouse fetuses or neonates by inactivating both
ADH5 and ALDH2. Although we could not measure
formaldehyde-derived DNA adducts in the Aldh2−/−/
Adh5−/− organs in this study, we expect that tissues in
Aldh2−/−/Adh5−/− mice may show a marked increase in
formaldehyde-derived DNA adducts compared to single
Aldh2−/− and Adh5−/− mice as well as wild-type mice.
The key point of this study is that the simultaneous

disruption of two major metabolic pathways involved in
endogenous formaldehyde detoxification leads to partial
synthetic lethality during embryonic and early post-natal
periods in mice with normal DNA damage repair func-
tion. Approximately 50% of East Asians have dominant-
negative ALDH2*2 alleles, which are low-function vari-
ants of ALDH2, and it has been reported that the
ALDH2 function of ALDH2*1/*2 is less than 8% com-
pared to that of wild-type ALDH2*1/*1 [16]. As with
Aldh2-deficient mice, individuals with ALDH2*2 do not
show a severe, fatal phenotype [24]. However, unfavor-
able effects of ALDH2*2 allele have been reported in
terms of the risk of some diseases such as osteoporosis
[25] and neurodegenerative diseases [24, 26, 27]. These
diseases in individuals with ALDH2*2 are not necessarily
related to alcohol consumption but rather may be due to
endogenous aldehydes. ALDH activity for 10 μM formal-
dehyde in hepatic mitochondria from individuals with
ALDH2*1/*2 was ~ 30% of that from individuals with
functional ALDH2*1/*1 [16]. Therefore, endogenous for-
maldehyde may be elevated in people with ALDH2*1/*2
and ALDH2*2/*2. Recent studies have reported that

aldehydes such as formaldehyde and acetaldehyde are
complexed to form 1,4-dihydropyrdine-lysine adducts [3,
6, 28], which is an inflammatory, oxidation-specific epi-
tope that can cause the inhibition of osteogenesis [29,
30]. The increased formation of 1,4-dihydropyrdine-ly-
sine adducts in the bone of individuals with the
ALDH2*2 allele could cause worse osteoporosis than in-
dividuals with ALDH2*1/*1. Likewise, SAMP8 mice,
which are used as a model for Alzheimer’s disease, show
increased formaldehyde-producing semicarbazide-
sensitive amine oxidase (SSAO) and decreased ADH5
activity in the brain [31]. In addition, Aldh2−/− mice
showed elevated hippocampal formaldehyde levels pro-
duced by mitochondrial sarcosine dehydrogenase and
impairment in memory [32], suggesting that ALDH2 de-
ficiency causes an accumulation of endogenous formal-
dehyde which may result in memory loss in mice. As
such, individuals with the ALDH2*2 allele may exhibit
elevated formaldehyde in the brain, which may explain
an association between individuals with the ALDH2*2 al-
lele and increased incidence of neurodegenerative
diseases.
Although ADH5 is ubiquitously expressed in various

animal and human tissues, expression levels of ADH5
may be widely variable between organs and cell types.
Indeed, wild-type C57BL/6 mice showed the greatest
ADH5 expression in the liver and kidney, whereas the
expression of ADH5 in the bone marrow was reported
to be tens of times lower than its expression in the kid-
ney [14]. As with mice, ADH5 expression was lowly de-
tected in lymph nodes, spleen, and bone marrow in
humans [33]. Based on this evidence, depending on the
organs, ADH5 expression may be quite low and formal-
dehyde metabolism may be in a persistently reduced
state. When ADH5 expression is reduced in certain or-
gans and cell types in individuals with dominant-
negative ALDH2*2 alleles, the ability to metabolize en-
dogenous formaldehyde may be significantly reduced,
possibly resulting in endogenous formaldehyde accumu-
lation. This may be particularly important when heredi-
tary Fanconi anemia occurs under ALDH2 dysfunction.
Specifically, Aldh2−/−/FancD2−/− mice develop aplastic
anemia [34], and the disease severity of Japanese Fanconi
anemia patients correlates with the presence of a
dominant-negative ALDH2*2 allele [35]. Based on this
evidence, acetaldehyde has been recognized as an en-
dogenous source of DNA inter-strand crosslinks. How-
ever, as described above, endogenous acetaldehyde is
unlikely to excessively accumulate in humans with the
ALDH2*2 allele due to the existence of many compensa-
tory pathways for acetaldehyde metabolism. Instead,
when an individual with mutated Fanconi anemia genes
also carries the dominant-negative ALDH2*2 allele,
ADH5 expression in hematopoietic tissue may be down-
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regulated in hematopoietic tissues, which may lead to
more serious bone marrow abnormalities such as
leukemia compared to patients with wild-type
ALDH2*1/*1 alleles.
In summary, we conclude that more attention should

be paid to endogenous aldehydes, especially formalde-
hyde, in understanding the etiology of diseases that
people with ALDH2 dysfunction are susceptible to
(Fig. 3). Since more than 50% of the East Asian popula-
tion has the dominant negative ALDH2*2 allele, it may
be that they do not have functional compensatory path-
ways for endogenous formaldehyde detoxification. In
such ALDH2-deficient populations, ADH5 function may
be decreased by systemic or local GSH depletion under
various pathophysiological conditions, further resulting
in endogenous formaldehyde accumulation. Endogenous
formaldehyde plays an important role in the pathogen-
esis of inflammation, osteoporosis, cancer and neurode-
generative diseases. Therefore, it is important to study
whether the disease that frequently affects individuals
with the ALDH2 * 2 allele is due to high levels of en-
dogenous formaldehyde present in vivo.
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Fig. 3 Hypothetical mechanism of possible human diseases caused by endogenous formaldehyde in individuals with the ALDH2*2 allele. GSH
depletion occurs due to systemic or local oxidative/glycation stress, leading to the failure of the main formaldehyde detoxification pathway via
ADH5. Under such conditions, individuals with the ALDH2*2 allele, which normally oxidizes formaldehyde at lower levels, accumulate intracellular
formaldehyde. The increased endogenous formaldehyde may induce various human health problems
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