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Abstract

Currently, there are more than 100,000 industrial chemicals substances produced and present in our living
environments. Some of them may have adverse effects on human health. Given the rapid expansion in the number
of industrial chemicals, international organizations and regulatory authorities have expressed the need for effective
screening tools to promptly and accurately identify chemical substances with potential adverse effects without
conducting actual toxicological studies. (Quantitative) Structure–Activity Relationship ((Q)SAR) is a promising
approach to predict the potential adverse effects of a chemical on the basis of its chemical structure. Significant
effort has been devoted to the development of (Q) SAR models for predicting Ames mutagenicity, among other
toxicological endpoints, owing to the significant amount of the necessary Ames test data that have already been
accumulated. The International Council for Harmonisation of Technical Requirements for Pharmaceuticals for
Human Use (ICH) M7 guideline for the assessment and control of mutagenic impurities in pharmaceuticals was
established in 2014. It is the first international guideline that addresses the use of (Q) SAR instead of actual
toxicological studies for human health assessment. Therefore, (Q) SAR for Ames mutagenicity now require higher
predictive power for identifying mutagenic chemicals. This review introduces the advantages and features of
(Q)SAR. Several (Q) SAR tools for predicting Ames mutagenicity and approaches to improve (Q) SAR models are also
reviewed. Finally, I mention the future of (Q) SAR and other advanced in silico technology in genetic toxicology.
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Introduction
In July 2015, the Chemical Abstracts Service (CAS), a
global authority on chemical information, and the infor-
mation division of the American Chemical Society an-
nounced the registration of the one hundred-millionth
chemical substance to its chemical substance database.
Only five years later, the number of registered chemical
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substances is about to surpass 200 million (https://www.
cas.org/). This means that a new chemical substance was
registered every two minutes, and as this pace would ac-
celerate in the future, the number is expected to surpass
one billion 10 years from now. Currently, of these
chemical substances, approximately 100,000 types of
chemical substances are industrially produced and exist
in our living environment, and this number is also grow-
ing (https://www.minambiente.it/sites/default/files/archi-
vio/allegati/reach/InterpretationWSSDGoals.pdf). These
chemical substances released into the environment,
some may adversely affect human health or affect the
global environment or ecosystem, for instance, by
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causing global warning or destroying natural resources.
Therefore, there is a need to appropriately assess and
manage these chemical substances. In World Summit on
Sustainable Development (WSSD) held in 2002 in
Johannesburg, South Africa, there was an agreement on
(and later expanded), “aiming to achieve, by 2020, that
chemicals are used and produced in ways that lead to
the minimization of significant adverse effects on human
health and the environment, using transparent science-
based risk assessment procedures and science-based risk
management procedures, taking into account the pre-
cautionary approach” (WSSD 2020 Goal). Regulatory au-
thorities in developed countries are being requested to
endeavor to achieve the WSSD Goal. In Japan, based on
the “Act on the Regulation of Manufacture and Evalu-
ation of Chemical Substances (Chemical Substances
Control Law)” established in 1968, the characteristics
(degradability and accumulative properties) and effect of
new chemical substances on the environment and hu-
man health are examined, and necessary regulation re-
garding their production, import, use, etc., has already
been implemented. Based on the Chemical Substances
Control Law, tens of thousands of new chemical sub-
stances are registered annually. However, at present,
there are only approximately 400 mass-produced chem-
ical substances, whose production/import volume ex-
ceeds 10 tons, and they are investigated by the joint
council, which comprises the Japanese Ministry of Econ-
omy, Trade and Industry, the Ministry of the Environ-
ment, and the Ministry of Health, Labor, and Welfare
(https://www.meti.go.jp/policy/chemical_management/
english/cscl/). A large number of other chemical sub-
stances are registered without considering their effect on
the environment or humans health assessed.
The safety of chemical substances is typically assessed

by biological tests using animals, mammalian cells, mi-
croorganisms, etc. However, testing such a vast quantity
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change related to carcinogenesis. It has also been stated
that threshold values can be set for genotoxic substances
that are not mutagenic [1]. Therefore, even at low ex-
posure levels, the assessment of mutagenicity, its pres-
ence or absence in particular, is important for assessing
the cancer risk of chemical substances. The Ames test,
one of the typical mutagenicity tests, is consistently re-
quired for testing the safety of chemical substances
where exposure is extremely low (e.g., residual agricul-
tural chemicals or food additives that are found in trace
amounts in food products, eluates from plastic con-
tainers, or impurities found in pharmaceuticals).
In this review, I am mainly focusing on (Q) SAR for

the Ames test. In the field of (Q) SAR related to the as-
sessment of chemical substances’ effects on human
health, studies on the Ames mutagenicity prediction (Q)
SAR are the most advanced, and the method has already
been in practical use. The reasons for such advancement,
in addition to the aforementioned importance of the
Ames test, are:

1) Mutagenic chemical substances generally have
electrophilic chemical structures, which provide
molecular mechanisms whereby mutagenicity can
be explained using physical chemistry [2].

2) Results from the Ames test have well
reproducibility (80–85%) and are consistent in
comparison with results from other toxicological
tests [2]. Of all the toxicity tests, the Ames test has
the greatest quantity of accumulated tested data.
This large set of reliable test data makes it easy to
develop a (Q) SAR prediction model.

3) The International Council for Harmonisation of
Technical Requirements for Pharmaceuticals for
Human Use guideline for the assessment and
control of mutagenic impurities in pharmaceuticals
(ICH-M7) was established in 2014. This guideline
recommends the use of (Q) SAR for initially
assessing the mutagenicity of impurities in
pharmaceuticals instead of actual Ames tests [3].
This guideline has greatly promoted the
development of (Q) SAR models for predicting
Ames mutagenicity in the last several years.

(Q) SAR is the study of the correlation between chem-
ical structure and toxicity. Toxicity of a chemical sub-
stance generally has a quantitative manner, so the
original purpose of toxicity prediction using (Q) SAR is
to predict the dose at which an effect would be observed
(the end-point). Meanwhile, in mutagenicity tests (geno-
toxicity tests) such as the Ames test, the assessment is
not done quantitatively, but rather, the results are bin-
ary, pertaining to the presence or absence (positive or
negative) of mutagenicity. That such qualitative results
facilitate easy validation (either correct or incorrect) of
the prediction model. It is another reason of the ad-
vancement of easily modeling the Ames mutagenicity
prediction (Q)SAR. Thus, the Ames mutagenicity pre-
diction is originally SAR, which is why I attach the letter
Q in parentheses. In this review, for convenience, I will
hereinafter use the expression QSAR.

Prediction of Ames mutagenicity by QSAR
Studies for predicting mutagenicity or carcinogenicity
from the structure of chemical substances have been
being conducted since a long time. In the 1960s,
James & Elisabeth Miller et al. [4] focused on the
electrophilicity of carcinogenic alkylators. They pro-
posed an electrophilic theory, stating that many car-
cinogenic chemical substances are electrophilic
derivatives, or that they are metabolized to become
such derivatives in human body, and bond with nu-
cleophilic groups such as DNA or proteins in the tar-
get tissue for carcinogenesis, causing cancer. Since
then, the study of chemical carcinogenesis has pro-
gressed rapidly. Bruce Ames developed a series of sal-
monella strains sensitive to carcinogenic chemical
substances, e.g., alkylators and intercalators, and
established the Ames test [5–7]. The Ames test can
be regarded as an in vitro model for detecting car-
cinogenic chemical substances. Most of the carcino-
genic substances from the mutational mechanism
gave positive results in the Ames test, and these re-
sults were considered valid in the scope of Millers’
hypothesis. Following Miller’s electrophilic theory,
John Ashby and Raymond Tennant developed a struc-
tural alert (SA) and carcinogenicity prediction compil-
ation for carcinogenic chemical substances [8, 9].
Carcinogenic SA was defined as a molecular func-
tional group or substructure related to the carcino-
genic activity of chemical substances. It was also
considered as a mutagenic SA that induces gene mu-
tation, which is an important step in carcinogenesis.
Ashby identified, out of 222 chemical substances in
the U.S. National Toxicology Program, 18 types of
SAs that showed a strong correlation with positive re-
sults in rodent carcinogenicity testing [10]. Currently,
there are two main types of Ames mutagenicity
QSAR models: rule-based and statistics-based (Fig. 1).
The rule-based QSAR, as first implemented by Ashby
et al., is a method where characteristic substructures
that give positive results are defined based on already
known data, and Ames tests results are predicted
qualitatively using an established empirical rule. On
the other hand, statistics-based QSAR is based on
physicochemical properties expressed in terms of mo-
lecular descriptors (numerical data) such as geometric,
electronic, physicochemical, and descriptors that



Fig. 1 Rule based QSAR and statistical based QSAR
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correlate highly with positive results in the Ames test
and are used to predict test results using machine
learning methods.
In the past, regarding Ames mutagenicity QSAR, many

QSAR tools have been developed for both academic and
commercial purposes. The Organisation for Economic
Cooperation and Development (OECD) indicated that
QSAR will be used actively in future toxicity assessments
of chemical substances and published principles for
international harmonization in relation to QSAR assess-
ment (Table 2). Currently, these principles are not
mandatory and have been delegated to their respective
countries.
Table 2 OECD Principles for the validation, for regulatory
purposes, of QSAR models

1. A defined endpoint

Clarify the endpoint of a test system for the predictive model (predict
Ames test results, chromosomal aberration test results, not predict
genotoxicity or mutagenicity).

2. An unambiguous algorithm

Clarify the types of models (rule-based and statistical-based) and the
methods (algorithms, descriptors, etc.) used to build the models, and
ensure their transparency. However, in the case of models for com-
mercial purposes, this information is often not necessarily disclosed.

3. A defined domain of applicability

Since the predictability of QSAR depends on the training set used to
build the model, the types of chemicals that can make highly
accurate predictions are limited. Therefore, clarify the limits of the
chemical structure to which the QSAR model can be applied
(Clarification of Out of Domain).

4. Appropriate measures of goodness-of–fit, robustness and
predictivity

The fitness and robustness of the predictive model should be
evaluated using an internal training set. Also, its predictability should
be determined using an appropriate external dataset.

5. A mechanistic interpretation, if possible

If possible, show the mechanical association between the model
descriptor and the prediction endpoint. If it can be interpreted by
mechanisms, it can be part of the scope of Principle-3.
Leading QSAR tools for predicting Ames
mutagenicity
Derek Nexus (Lhasa limited, UK): rule-based QSAR
Derek (Deductive estimation of risk from existing know-
ledge) Nexus is a rule-based expert QSAR system avail-
able commercially as part of the Lhasa Knowledge Suite.
The knowledge rules included are created with consider-
ation of insights related to SA, chemical compound ex-
amples, and metabolic activation and mechanism. These
knowledge rules are being continuously developed by
the provision of data and knowledge by private corpora-
tions, universities, public research institutions, and non-
profit organizations. In Derek Nexus, a prediction is
derived by comparing the structural characteristics of
target compounds that have toxicophores (in other
words, SAs that are assumed to be involved in toxic ac-
tions) that are coded as structural patterns in its know-
ledge base. The final prediction is derived from the
existence of toxicophores in the queried structure. The
validity of the Derek Nexus prediction is usually con-
firmed by referencing related literature, and the user can
obtain a reliable prediction. The main strength of Derek
Nexus is transparency of prediction, the fact that user
groups give their assessments during rule development,
and the ease with which new rules can be added. As this
system is a rule-based system, there is no prescribed
training set or scope of applications. However, using the
recently included structure classification function, it has
become possible for users to verify their negative result
predictions [11]. In this system, chemical compounds
that have alerts with an inference level of equivocal or
higher are processed as positive result predictions.

Sarah Nexus (Lhasa limited, UK): statistics-based QSAR
The Lhasa Knowledge Suite also includes a statistics-
based Ames mutagenicity model called the Sarah Nexus.
In this model, a self-organizing hypothetical network
(SOHN) is used to produce an activity hypothesis for
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queried compounds based on the existence of substruc-
tures, whose relation to activation or deactivation in the
training set has been acknowledged [12]. Hypotheses are
integrated, and a comprehensive prediction is made re-
garding the activity of queried compounds. In addition,
the reliability of each prediction is shown. Predictions
are determined by the similarity of queried compounds
and the nearest data in the training set for each hypoth-
esis. Next, the reliability of each individual hypothesis is
integrated, and the reliability of the comprehensive
prediction and prediction for the queried compound is
obtained (This comprehensive prediction may be posi-
tive, negative, equivocal, or outside the applicable scope).
For the user, in addition to a comprehensive prediction,
hypotheses and examples from related training sets are
displayed, along with related metadata.

CASE ultra (MultiCASE Inc., USA): statistics-based QSAR
CASE Ultra is a toxicity prediction software based on
QSAR developed by MultiCASE Inc. in the United
States. CASE Ultra uses a statistical method as its basis,
and alerts are automatically extracted from training data
using machine learning technology. The data required
for training are the chemical structures and their toxicity
labels [13, 14]. The degree of toxicity predicted for the
queried chemical substance depends not only on the
specified alert, but also on the structural environment
around the alert. The structural characteristic of the
alert surroundings is called the “modulator,” and this is
also learned automatically from the training data. In this
algorithm, to construct a QSAR model with continuous
toxicity endpoints, various physical chemistry parame-
ters and descriptors are used. CASE Ultra’s main models
that relate to Ames mutagenicity comprise four modules:
GT1_AT_ECOLI, GT1_A7B, PHARM_ECOLI, and
PHARM_SALM. In 2018, GT1_BMUT, the consensus
model for Salmonella/E. coli was released.

Leadscope model applier; LSMA (Leadscope Inc., USA):
statistics-based QSAR
This QSAR model for mutagenicity is a statistics-based
QSAR tool developed by Leadscope Inc. in collaboration
with the U.S. Food and Drug Administration. The
models employed are constructed from training sets of
publicly released Ames mutagenicity data, and the
structural descriptors are based on the following: (1)
pre-defined structural characteristics, (2) automatically
generated chemical frameworks, (3) external knowledge,
and (4) computed characteristics. Selected descriptors
(independent variables) and Ames mutagenicity data
(responding variables) are used to predict Ames test re-
sults using a partial logistic regression model. The model
displays the probability of obtaining a positive result and
structural characteristics contributing to activation and
deactivation. It also displays detailed test information re-
lated to the chemical substances in the training set. This
enables experts to conduct detailed reviews of the train-
ing set.

TIMES_AMES (Bourgas University, Bulgaria): rule-based
QSAR
The TIMES_AMES QSAR tool is included in the
OASIS/TIMES software, which is commercially available
and provided by Bourgas University. The Ames/QSAR
tool includes SA, modifiers for explaining other effects
related to molecular structure, and an interaction mech-
anism between DNA and SA. A rule base is used to
determine SA, and pattern recognition (Mechanism-
based common reactivity pattern) is used for mutagenic-
ity prediction. OASIS/TIMES is equipped with a liver
metabolism simulator based on metabolic pathways (Tis-
sue Metabolite Simulator; TIMES). Chemical substances
in the training set used in this model can be classified
into those that have mutagenicity without metabolic
activation, those that have mutagenicity after metabolic
activation, and those that are not mutagenic regardless
of metabolic activation [15, 16]. When the Ames muta-
genicity under the presence of rat S9 is predicted for
queried compounds, the metabolite predicted to have
mutagenicity is displayed, along with a metabolic map of
the compound. This is OASIS/TIMES’ greatest
advantage.

Toxtree (Istituto Superiore di Sanità, Italy): rule-based
QSAR
ToxTree is a Java-based open source application that
categorizes chemical substances and predicts their
toxicity using a decision tree approach. ToxTree was de-
veloped by Ideaconsult Ltd. (Bulgaria) pursuant to a
contract with the European Commission’s Joint Research
Center. ToxTree, freely available to all, is a service de-
signed for scientific researchers and other individuals.
The Benigni/Bossa rule is used for predicting Ames mu-
tagenicity [17, 18]. Similar to Derek, it is theoretically
difficult to assess a chemical substance that does not
have a negative SA.

ADMEWORKS (FUJITSU KYUSHU SYSTEMS LIMITED,
Japan): statistics-based QSAR
ADMEWORKS is a consensus model comprising two
statistical models (one with high sensitivity and one with
high specificity) developed by Fujitsu Kyushu Systems
Ltd. It was mainly developed using 1977 types of
chemical compounds obtained from the U.S. National
Toxicology Program (NTP). In the case where results
from the two statistical models coincide, i.e., both being
positive or negative, the final estimation result is dis-
played. Otherwise a prediction will not be made. In
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addition to the consensus model, positive SAs and nega-
tive SAs are extracted from the original data and used as
filters before a prediction is made using the consensus
model. If the chemical compound includes any positive
alert, it is immediately classified as positive; if it includes
any negative alert, it is immediately classified as negative.
If no alert is included in the compound, the consensus
model will be used to perform a final prediction.

ChemTunes•ToxGPS (molecular networks GmbH and
Altamira LLC, USA): statistics-based QSAR
The ChemTunes model is based on a ToxGPS knowledge
base of in vivo and in vitro toxicity data collected from
regulation-related literature and primary information
sources. Predictions are performed using a QSAR model
that is based on action mechanisms and “chemical
species” alerts that are integrated using a “weight of
evidence” method for quantitative evidence, based on the
Dempser–Shafer theory. In this model, a structure base
(ToxPrint chemical species, etc.), a characteristics base
(dipole moments, solubility, logP, etc.), and quantum
descriptors are used. The ChemTunes•ToxGPS model
can be used for various human health-related toxicity end-
points. The deterministic approach estimates uncertainty,
and it is described by combining predictions from
multiple models and takes into consideration the reliability
of the information source for each piece of evidence.
Although not described here, the ChemTunes•ToxGPS
prediction system also prepares estimate values for the
uncertainty in each prediction.

MUT_Risk (simulations plus Inc., USA): statistics-based
QSAR
MUT Risk is an ADMET Risk™ score that summarizes
the mutagenicity predictions using 10 separate Artificial
Neural Networks Ensemble classification models (results
of 10 individual Ames tests with 5 strains under the
presence or absence of rat S9). For each positive classifi-
cation by each of five ±S9 model pairs, a point is added
to a total score. A threshold value used for judgment is
set by a user. MUT_Risk-0 judges whether the chemical
compounds are mutagenic when the score is greater
than 0, while MUT_Risk-1 judges whether the com-
pounds are mutagenic when the score is greater than 1.
This approach allows the tradeoff between sensitivity
and specificity to be adjusted in response to each appli-
cation. Each of the 10 contributing models has its own
unique out-of-scope flags and estimated uncertainty
values.

StarDrop auto-Modeller (Optibrium ltd., UK) statistics-
based
StarDrop is an integrated QSAR tool; it features Derek
Nexus as a knowledge-based toxicity prediction function
and Auto-Modeller as a statistics-based prediction func-
tion. In Auto-Modeller, a data set that includes struc-
tural information and the physical property values of
prediction targets allows the creation of an original pre-
diction formula almost automatically. This means that
there is no need to prepare descriptor information, and
the Modeller includes a function to automatically gener-
ate nine types of descriptors related to whole molecules
(molecular weight, logP prediction values, etc.) and 321
types of descriptors in SMARTS format (the number of
atomic species, characteristic group, etc.). It is also easy
to add original descriptors, and the application range is
wide. In this analytical method, 10 types of continuous
models and three types of category models are included,
and a function for automatically judging the best model
is also included. The high level of automation of such
high-quality capability of processing structural informa-
tion and statistical processing supports not only non-
specialists in the development of physical property
prediction models, but also specialists in streamlining
their trial-and-error processes.

T.E.S.T. (US Environmental Protection Agency, USA):
consensus model
The Toxicity Estimation Software Tool (T.E.S.T) is free
software from the US Environmental Protection Agency
that can predict endpoints for three human health ef-
fects, including Ames mutagenicity. The T.E.S.T. was
built with the belief that providing predicted results
from different algorithms would make the predicted tox-
icity more reliable. Therefore, T.E.S.T. includes a plural-
ity of prediction models constructed by a plurality of
algorithms using the same data set [19]. Regarding the
prediction of Ames mutagenicity, models using the fol-
lowing four types of algorithms are installed in T.E.S.T.

1) Hierarchical method: Statistics-based QSAR using
hierarchical clustering method

2) FDA method: Statistics-based QSAR using multiple
regression analysis for collected similar substances

3) Nearest neighbor method: Statistics-based QSAR
using the average data of three similar substances
collected from the training data set

4) Consensus method: The values obtained by the
above method are averaged.

VEGA (Istituto di Ricerche Farmacologiche Mario Negri,
Italy): consensus model
VEGA is a Java-based system developed by Italy’s Isti-
tuto di Ricerche Farmacologiche Mario Negri and is
available for free download. VEGA includes multiple
QSAR models developed using different data sets, and
its calculation results are outputted by the same display
method. The Mutagenicity (Ames test) model from the
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most recent VEGA version 1.1.4 includes the following
four models:

1) CAESAR: Statistics-based QSAR using a support
vector machine (SVM)

2) SarPy: Rule-based QSAR based on substructures
3) ISS: Rule-based QSAR based on Benigni/Bossa rules
4) KNN: Analogy (read-across) using istKNN

Ultimately, a consensus model derives a result based
on the results from these four models.

Assessing the predictive power of QSAR tools
Because the Ames test result are binary—positive or
negative—their predictive power can be objectively
quantified and assessed from their coincidence with cal-
culation results from QSAR. The 2 × 2 prediction matrix
comprising true positive (TP), false positive (FP), false
negative (FN), and true negative (TN) is given in Table 3.
Calculation methods for sensitivity (ability to detect
positive substances), specificity (ability to detect negative
substances), prediction rate of positive and negative
(accuracy of predictions), accuracy, balance accuracy, ap-
plicable scope, and Mathews’ correlation coefficient
(MCC) are given in Table 4. For high-quality QSAR
models, high sensitivity (surely detecting mutagenic sub-
stances), high negative prediction value (the one pre-
dicted as negative is indeed negative), high coverage
(able to evaluate as many chemical substances as pos-
sible) are considered important. These numerical values
depend highly on the balance of the data set being
assessed, and thus caution is required. Data sets sub-
jected to the assessment typically have a significant
amount of negative data. In the case where the ratios of
positive and negative in the data set are 10 and 90%, re-
spectively, even a QSAR model with a sensitivity of 40%
can be considered a good model. Balance accuracy and
MCC are predictive indicators, taking into consideration
a data set’s bias, and are useful for assessing the QSAR
tool’s predictive power using data sets from different as-
sessment subjects.

The application of QSAR in ICH-M7
ICH-M7 guideline for the assessment and control of
mutagenic impurities in pharmaceuticals was established
Table 3 2X2 prediction matrix for Ames mutagenicity classification

QSAR prediction class Positive

Negative

Unpredictable (OODa)
aOut of Domain
in 2014. This was the first international guideline that
allowed QSAR to be used as an alternative to biological
experiments to assess human health effect3. Impurities
in pharmaceuticals are found in trace amounts, consist
of many types, and in some cases they are unstable. It is
therefore often impossible to assess their toxicity via iso-
lation, purification, and biological experiments. If the
chemical structure of the impurity is known, this guide-
line that allows the assessment of mutagenicity using
QSAR is very realistic. In ICH-M7, the use of both rule-
based and statistics-based QSAR tools is required for the
assessment of Ames mutagenicity. Regarding these
QSAR tools, as long as the aforementioned OECD valid-
ation principles are adhered to, any QSAR tool can be
used. The absence of structural alerts from two QSAR
methodologies (rule-based and statistical-based) is suffi-
cient to conclude that the impurity is of no mutagenic
concern, and no further testing is recommended. In
cases where prediction results differ from one tool to an-
other, or prediction could not be carried out because of
out of domain, it is stated that a conclusion can be
drawn based on an appropriate review by experts. How-
ever, in the guideline, nothing is specifically described
regarding the specific strategy for such expert judg-
ments. In Japan, with the Japanese Environmental
Mutagen Society (JEMS), a workshop for developing
these strategies of expert judgments is conducted
every year [20, 21].

Ames/QSAR international challenge project for
the evaluation and improvement of QSAR tools’
predictive power
The establishment of ICH-M7 in 2014 has changed the
role of QSAR from a tool for pre-screening and predict-
ing Ames mutagenicity to a test for providing data on
assessment of mutagenicity of chemical substances.
Thus, greater predictive power of QSAR tools for Ames
mutagenicity predictions is required. However, in prac-
tice, the prediction accuracy of many QSAR tools is in-
sufficient. In particular, the sensitivity for new chemical
substances is reported to be 50% or lower [22]. To im-
prove the prediction accuracy of QSAR, the accumula-
tion of actual Ames test data as training data is
important. Training data that include a large amount of
data on chemical substances with unique structures
Experimental Ames mutagenicity class

Positive Negative

True Positive (TP) False Positive (FP)

False Negative (FN) True Negative (TN)

– –



Table 4 Performance metrics used to evaluate classifiers

Performance metric Calculation and description

Sensitivity (SENS) TP/(TP + FN)

Measures the ability of a QSAR tool to detect Ames positives compounds correctly.

Specificity (SPEC) TN/(TN + FN)

Measures the ability for a QSAR tool to detect negatives compounds.

Accuracy (ACC) (TP + TN)/(TP + TN + FP + FN)

Assesses a QSAR tool’s overall performance by returning the fraction of compounds which were correctly predicted.

Balanced Accuracy (BA) (SENS + SPEC)/2

Assesses the overall model performance, giving each class equal weight.

Positive Prediction Value (PPV) (TP)/(TP + FP)

Indicates how frequently positive predictions are correct.

Negative Prediction Value
(NPV)

TN/(TN + FN)

Indicates how often negative predictions are correct.

Mathews Correlation
Coefficient (MCC)

ððTP�TNÞ−ðFP�FNÞÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðTPþFPÞðTPþFNÞðTNþFPÞðTNþFNÞ
p

Assesses the overall performance of the model. Values can range from −1 to 1, which is in contrast to the other
metrics in this table which range form 0 to 1.

Coverage (COV) (TP + TN + FP + FN)/(TP + TN + FP + FN + OOD)

Evaluates the proportion of compounds for which the model can make a positive or negative prediction.
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would expand the chemical space, reduce false positive
(FP) and false negative (FN) results, and improve predic-
tion accuracy. The reliability of such test data is also im-
portant. Currently, there are approximately 10,000
chemical substances whose Ames test results are pub-
licly available through online websites. Many QSAR de-
velopers are developing QSAR models based on these
databases [18].
In Japan, the safety of new chemical substances is

assessed by industries under the Ministry of Health
Labor and Welfare (MHLW) according to the Chemical
Substances Control Law as well as the Industrial Safety
and Health Act (ANEI-HOU). The purpose of the
ANEI-HOU is to secure safety and health in the
workplace. For chemical substances to be newly
manufactured or imported in excess of 100 kg per year,
ANEI-HOU stipulates that producers conduct hazard in-
vestigations in advance and to notify the MHLW of the
results. As part of the hazard investigation, the Ames
test or its equivalent (e.g. rodent carcinogenicity testing)
is required. The Chemical Hazards Control Division
(CHCD), Industrial Safety and Health Department,
Labor Standards Bureau, MHLW of Japan is responsible
for monitoring industries under the ANEI-HOU. Since
ANEI-HOU started form 1979, more than 20,000 chem-
ical substances’ Ames tests have been conducted by
chemical companies, pharmaceutical companies and
contract laboratories under GLP compliance. It is now
the world’s largest Ames test big-data. The results of the
Ames tests are confidential and cannot be basically
disclosed.
The Division of Genetics and Mutagenesis, National
Institute of Health Sciences of Japan (DGM/NIHS) re-
cently established a new Ames database consisting of 12,
140 new ANEI-HOU chemical substances for developing
QSAR models, and organized an international AMES/
QSAR Challenge Project for the evaluation and improve-
ment of Ames/QSAR tools with the permission from the
CFCD office of MHLW. The Challenge Project was con-
ducted from 2014 to 2017 in collaboration with 12
QSAR vendors with 17 QSAR tools from the USA, UK,
Italy, Spain, Bulgaria, Sweden, and Japan (Table 5).
Based on the hypothesis that expansion of training data
enhances the predictive power of QSAR tools, a three-
phase challenge was designed. In each phase, a list of
about 4000 chemicals without their Ames test results
were provided to the QSAR vendors. The QSAR vendors
predicted the Ames mutagenicity using their QSAR tools
and reported the results to the DGM/NIHS. The DGM/
NIHS validated the performance of the QSAR tools and
disclosed the Ames results. Table 6 summarizes the
number of Ames-positive and –negative chemicals in
each phase. Interestingly, the portions of Ames-
positive chemicals was constant in each phase
(approximately 15%) despite the chemicals were arbi-
trarily divided into phases regardless of the Ames re-
sults. It means that roughly 15% of chemical
substances newly appearing in commerce are Ames
mutagens. This information is valuable for quality
control of Ames mutagenesis datasets and for appro-
priate allocation of resources to assure the safety of
commercial chemicals.



Table 5 Participants in Ames/QSAR international challenge project

QSAR Vender QSAR Tool

1. Lhasa Limited (UK) ① Derek Nexus

② Sarah Nexus

2. MultiCASE Inc. (USA) ③ CASE Ultra statistical-based

④ CASE Ultra rule-based

3. Leadscope Inc. (USA) ⑤ Leadscope statistical-based

⑥ Leadscope rule-based

4. IRCCS - Istituto di Ricerche Farmacologiche Mario Negiri (Italy) ⑦ CAESAR

⑧ SARPY

⑨ KNN

5. LMC - Bourgas University (Bulgaria) ⑩ TIMES_AMES

6. Istituto Superiore di Sanita (Italy) ⑪ Toxtree

7. Prous Institute (Spain) ⑫ Symmetry

8. Swedish Toxicology Science Research Center (Sweden) ⑬ AZAMES

9. FUJITSU KYUSHU SYSTEMS LIMITED (Japan) ⑭ ADMEWORKS

10. IdeaConsult Ltd. (Bulgaria) ⑮ AMBIT

11. Molecular Networks GmbH and Altamira LLC (USA) ⑯ ChemTune•ToxGPS

12. Simulations Plus, Inc. (USA) ⑰ MUT_Risk
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As the result of three trials of the Ames/QSAR Inter-
national Challenge Project, all QSAR tools were consid-
erably improved. Most tools achieved > 50% sensitivity
and accuracy was as high as 80%, which is almost
equivalent to the inter-laboratory reproducibility of
Ames tests (Table 7), implying that the project was suc-
cessfully completed [23]. The DGM/NIHS will start the
next Ames/QSAR International Challenge Project near
future, because more than 2000 new chemicals’ Ames
tests results submitted to ANEI-HOU has been accumu-
lated during recent a few years.

Construction of big-data database of chemical
substances and development of new platform for
human safety assessment, using AI and deep
learning, for pharmaceuticals, foods, and
household chemical substances
At the NIHS, we are studying toward the construction
of a big-data database of chemical substances that in-
tegrates, upgrades, and expands large-scale and reliable
toxicity testing data pertaining to human health that we
have been consolidating over many years. From 2018,
we have started research on the development of a safety
Table 6 Number of chemicals in Ames/QSAR international challeng

Class Phase I (2014–2015) Phase II (2015–2

Positive 556 (14.5%) 562 (14.7%)

Negative 3336 (85.5%) 3267 (85.3%)

Total 3902 3829
prediction platform based on integrate expertise in safety
evaluation, experience in high-precision safety research,
and artificial intelligence (AI) such as deep learning. This
platform is targeted at pharmaceuticals, foods, and other
chemicals in our living environment. By integrating in-
sights from fields with differing regulations, this is ex-
pected to contribute to the acceleration/streamlining/
sophistication of toxicity assessment, creating preventa-
tive measures against side effects from pharmaceuticals,
establish reliable safety-assessment standards for
household and food related chemical substances, and
strengthen Japan’s industrial competitiveness.
Of many types of toxicity testing data, because the

Ames test data have the greatest quantity, we are devel-
oping an Ames test prediction model that employs deep
learning in this project. In our prototypical model,
feature quantities are automatically extracted from
chemical structures described in the simplified
molecular-input line-entry system (SMILES) notation
using a convolutional neural network (CNN). Usually, a
CNN is used for image classification; however, it can
also be applied to text classification based on character
information such as SMILES. First, a character in
e project

016) Phase III (2016–2017) Total (2014–2017)

629 (14.3%) 1757 (14.4%)

3780 (85.7%) 10,383 (85.6%)

4409 12,140



Table 7 Averages and ranges of the performance metrics of QSAR tools in the Ames/QSAR challenge project

Performance metric Phase I Phase II Phase III

Sensitivity (%) 56.7 (38.6–70.0) 58.0 (41.6–72.1) 57.1 (31.7–67.6)

Specificity (%) 77.7 (62.5–91.5) 84.2 (64.9–92.8) 79.9 (60.7–93.0)

Accuracy (%) 74.7 (63.6–83.9) 80.3 (65.8–87.7) 76.7 (68.0–87.3)

Balanced Accuracy (%) 67.2 (62.1–72.5) 71.1 (64.0–78.9) 68.5 (62.0–74.4)

Positive Prediction Value (%) 31.2 (24.8–43.1) 41.2 (27.4–56.3) 34.8 (21.1–51.0)

Negative Prediction Value (%) 91.5 (89.4–92.5) 91.9 (88.1–94.2) 92.0 (89.1–93.6)

MCC 0.28 (0.20–0.39) 0.37 (0.25–0.50) 0.31 (0.17–0.44)

Coverage (%) 91.4 (57.7–100) 89.1 (22.7–100) 92.3 (74.5–100)
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SMILES notation is converted into a one-hot vector with
70 dimensions. After this, normalization is performed
according to the maximum number of characters; this is
taken to be a two-dimensional array of “70 × maximum
number of characters,” and the convolution is performed
similar to the case of images. By using this method, it is
possible to include information of what characters are
placed before and after a character, enabling the detection
of feature quantities related to chemical structure (Fig. 2).
By having a SMILES-CNN model learn Ames test data for
16,651 chemical substances and then testing its accuracy
using an assessment data set of 2000 new substances, we
were able to obtain results with 55% sensitivity, 80%
specificity, and 77% accuracy. This prediction rate is
comparable with prediction rates of other QSAR tools.
Currently, we are aiming to improve the prediction
accuracy by enhancing the learning data set and
adding explanatory variables. Apart from the use of
SMILES-CNN, we are implementing a graph-CNN
model that multi-dimensionally analyzes elements and
substructures that are adjacent to three-dimensional
chemical structures.
Fig. 2 Convolutional Neural Network (CNN) from SMILES text
What is required for further improvement of the
prediction rate?
As stated previously, the prediction accuracy for Ames
mutagenicity are approximately 80 and 77% by QSAR
and by SMILES-CNN, respectively. What would be re-
quired to further improve the accuracy and attain an ac-
curacy closer to 100%? My view is that the issue is not
with the prediction model, but rather with the Ames test
results themselves. According to the survey of Ames test
data from public domains, estimated inter-laboratory re-
producibility of Ames tests is around 85% [24, 25],
which is almost equivalent to the predictive power of the
better QSAR or SMILES-CNN. It means that the predic-
tion accuracy of 80% has almost reached saturation, and
even if QSAR models are improved by the accumulation
of more test data, further improvement of the predictive
power is difficult. For the improvement of the prediction
power, improvements of QSAR models as well as
improvement of methodological weakness and data
evaluation of Ames test on mutagenic mechanism are
important. For example, Ames test results are binary,
either positive or negative, meaning that a weak positive



Honma Genes and Environment           (2020) 42:23 Page 11 of 13
response in some cases could be judged as negative.
Generally, positive results in Ames tests have a quantity
equal to or greater than twice the negative control as
their standard for positivity (2-fold rule) [26]. When the
maximum mutation frequency is 1.9-fold with dosage
dependency and repeatability, the rule renders a negative
result judgment. On the other hand, there are the cases
in which when there are multiple data and only one of
them is positive, a conservative judgment of positive is
made out without considering mutagenic mechanisms.
These obscure test results were integrated into the data-
base and used for developing QSAR models. These
incorrect data hamper predictions and are a source of
noise in the development of accurate QSAR models.
Whether in QSAR or AI, as long as data from bio-

logical test results are used as training data, the reliabil-
ity of the data is the most important element in terms of
improving the prediction power. It is thus essential to
establish a large benchmark database consisting only of
well-validated Ames test results to build more accurate
QSAR models. Positive outcome by QSAR can some-
times suggest the alert structures and mechanisms used
as the basis for judgment. If this mechanism is relevant,
there is a need to question the actual test result and
reassess it. Upon judging the test results, the expert
judgment based on the mechanism is important, as
opposed to a formulaic or conservative manner based on
a guideline. Cross-talk between actual test results and
QSAR results can lead to a correct assessment. From this
assessment, a reliable benchmark data set is constructed,
and QSAR modela can be remodeled using this data set.
By adding new training data sets and repeating the process
of cross-talk with test results followed by remodeling, it is
expected that the predictive power of QSAR and/or
AI tools can be improved continuously and that they
would surpass judgment by actual test results (Fig. 3).
Fig. 3 Evaluation of mutagenicity of chemicals by Integrated Approach
In reality, time is still needed for in silico predictions
to surpass real tests in terms of reliability. Currently, I
am recommending an integrated approach when asses-
sing the mutagenicity of chemical substances, whereby
both Ames tests and QSAR are used, and the final
conclusion should be derived from the results of both
types of studies (Fig. 3). The quality of test data re-
ported through assessment reports or scientific re-
search papers is multifarious, and such results cannot
simply be trusted. The idea is to use QSAR, not as a
prediction tool, but as a supporting tool for final as-
sessment of actual test results. We are practically
using this approach for assessing the mutagenicity of
food flavorings as well as chemical substances eluted
from plastic apparatuses/containers and packaging.

Concluding remarks
At the beginning of this review, I mentioned that so far
humans have created about 200 million chemicals. So
how many chemicals can theoretically be created? It de-
pends on the molecular weight and the type of constitu-
ent atoms, but its number from test calculations is
generally estimated to be between 1033 and 1060, which
is the final chemical space [27]. These numbers exceed
astronomical numbers. Obviously, assessing the safety of
each of these chemical substances by biological testing is
absolutely impossible. Thus, it is obvious that in silico
methods will definitely become important in the future.
While the chemical space is estimated to be between
1040 and 1060, there is something known as the Go
space, which has been calculated to be as large as 10360.
Currently the AI program, “Alpha Go”, is competing
well with human Go masters. In comparison, the chem-
ical space is overwhelmingly small, and I am optimistic
that predicting the toxicity of chemicals will be easy in
the near future with AI. Now that self-driving cars are
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coming to life by AI, AI will be able to reliably predict
the properties of immobile chemicals. The important
thing is to give AI the correct toxicity information and
train repeatedly. This is not an easy task, but it will be
realized in the near future. During the twenty-first
century, toxicology will definitely switch from biology to
chemistry (I hope). And genetic toxicology will be a
pioneering in in silico toxicology.
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