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Abstract

Before ‘cancer interception’ was first advocated, ‘interceptor molecules’ had been conceived as a sub-category of
preventive agents that interfered with the earliest initiation steps in carcinogenesis. Three decades ago, a seminal
review cataloged over fifty synthetic agents and natural products that were known or putative interceptor
molecules. Chlorophylls and their derivatives garnered much interest based on the potent antimutagenic activity in
the Salmonella assay, and the subsequent mechanistic work that provided proof-of-concept for direct molecular
complexes with planar aromatic carcinogens. As the ‘interceptor molecule’ hypothesis evolved, mechanistic
experiments and preclinical studies supported the view that chlorophylls can interact with environmental
heterocyclic amines, aflatoxins, and polycyclic aromatic hydrocarbons to limit their uptake and bioavailability in vivo.
Support also came from human translational studies involving ultralow dose detection in healthy volunteers, as well
as intervention in at-risk subjects. Antimutagenic and antigenotoxic effects of natural and synthetic chlorophylls
against small alkylating agents also highlighted the fact that non-interceptor mechanisms existed. This gave
impetus to investigations broadly related to free radical scavenging, anti-inflammatory effects, immune modulation
and photodynamic therapy. Therapeutic aspects of chlorophylls also were investigated, with evidence for cell cycle
arrest and apoptosis in human cancer cells. As the science has evolved, new mechanistic leads continue to support
the use and development of chlorophylls and their porphyrin derivatives for cancer interception, beyond the initial
interest as interceptor molecules.
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Background
Long before the term 'cancer interception' came into
vogue [1, 2], 'interceptor molecules' already had been
conceptualized [3], incorporating 'desmutagens' and in-
hibitors that might prevent the formation of carcinogens
[4–8]. Harman and Shankel [3] noted that antimutagens
could act at multiple levels, including the following: (i)
prevention of mutagen formation; (ii) interception of
mutagens via cellular or tissue organization; (iii) inter-
ception of mutagens by metabolites or enzymes present
in cells; (iv) neutralization or removal of pre-mutagenic
lesions in DNA by chemical compounds; and (v) activa-
tion of mechanisms that enhanced error-free DNA re-
pair, blocked error-prone DNA repair, or augmented the
metabolic inactivation of mutagens. The diverse range of
compounds surveyed included N-acetyl-L-cysteine, acyl-
glucosylsterols, albumins, allyl sulfides, p-aminobenzoic
acid, aromatic isothiocyanates, ascorbic acid, bilirubin and
biliverdin, bioflavonoids, butylated hydroxyanisole and bu-
tylated hydroxytoluene, caffeic acid, calcium, L-carnosine,
β-carotene, catechins, chalcones, chlorogenic acids,
creatine and creatinine, curcumin, diallyl sulfides, α- and
β-dicarbonyls, dithiolthiones, ellagic acid, eugenol, fatty
acids, ferulic acid, fiber, gallic acid, γ-glutamylcysteine,
glutathione, L-histidine, hydroxychavicol, hypotaurine,
imidazole-4-acetate, mucins, myricetin, ovothiols, pan-
tetheine, polyamines, polyphenols, polyunsaturated fatty
acids, quercetin, retinoids, tannins, taurine, thiols, tocoph-
erols, uric acid, vitamins, and miscellaneous other agents
[3]. The latter review also included chlorophylls as puta-
tive interceptor molecules [3], as these phytochemicals
will be discussed here in greater detail, given that the field
has continued to evolve over the intervening three
decades.

Review
Chlorophylls as interceptor molecules
Hayatsu and colleagues first reported on the antimuta-
genic activities of chlorophylls and other porphyrins in
the Salmonella mutagenicity assay [9–11], which subse-
quently was confirmed by others [12–15]. A seminal re-
port [10] described molecular complex formation
in vitro between a heterocyclic amine mutagen and
chlorophyllin (CHL), the water-soluble derivative of nat-
ural chlorophyll a (Chla). Although evidence was lacking
in a preclinical cancer model, important groundwork
had been laid for the ‘interceptor molecule’ hypothesis,
with the possibility that molecular complexes might
lower carcinogen uptake and systemic bioavailability
after oral exposure. The appeal of such a mechanism im-
mediately was apparent, given the ubiquitous presence
of spinach and other chlorophyll-rich green leafy vegeta-
bles in the human diet [16–18]. Moreover, the mechan-
ism implied broad applicability against a wide range of

planar aromatic carcinogens that were known from the
literature, including cooked meat heterocyclic amines,
environmental polycyclic aromatic hydrocarbons, and
dietary aflatoxins [9–15]. These aspects will be reviewed
in the following sections.

Interception of heterocyclic amines by chlorophylls
Spectrophotometric titration studies provided evidence
for molecular complex formation between CHL and 2-
amino-3-methylimidazo [4,5-f] quinoline (IQ), as well as
with a dozen other dietary heterocyclic amine mutagens
[19–22]. An isosbestic point indicated the presence of a
1:1 complex in some cases, which was corroborated via
the mole ratio plot, whereas other interactions were
more consistent with 2:1 stoichiometry. Dissociation/
binding constants and docking scores in silico supported
reversible complexes involving multiple π-π (stacking)
interactions stabilized by van der Waals and electrostatic
bonds, which inhibited IQ-DNA binding in vitro [19].
An inverse correlation was observed between the bind-
ing constant (Kb) of the complex and the antimutagenic
potency in the Salmonella assay, i.e., the more stable the
interaction, the lower the concentration of CHL needed
to inhibit mutagenicity [20]. Notably, these findings were
extended to natural chlorophylls, chlorins, tetrapyrroles,
and other porphyrins [21].
Based on the hypothesis that molecular complexes

would limit carcinogen uptake and bioavailability,
corroborative experiments were conducted in vivo
[23–25]. Co-administration of CHL and 14C-labeled
IQ to the rat via single oral gavage inhibited IQ-DNA
adduct formation significantly in the liver and colon
[23, 24], and IQ-derived radiolabel was reduced in
liver, bile and urine while being increased simultan-
eously in the feces. Co-injection of CHL with 14C-la-
beled IQ into isolated loops of intestine in situ also
reduced the absorption of IQ from the gut, compared
with IQ alone [23]. Pretreatment with CHL in the
drinking water for 2 days before administering IQ by
single oral gavage increased the excretion of conju-
gated (detoxified) mutagens in the urine and feces
[25]. Finally, administration of IQ three times per
week by oral gavage, while providing CHL in the
drinking water, inhibited significantly the total tumor
burden at 52 weeks in the male F344 rat [26].
This was the first evidence in support of the anticarci-

nogenic activity of CHL in vivo, together with the work
by Hasegawa et al. on the inhibition of mammary car-
cinogenesis in female rats treated with the heterocyclic
amine 2-amino-1-methyl-6-phenylimidazo [4,5-b] pyri-
dine (PhIP) [27]. Findings from the author’s laboratory
are presented to highlight key aspects of the discussion
above (Fig. 1).
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Interception of aflatoxins by chlorophylls
In addition to its potent antimutagenic activity towards
aflatoxin B1 (AFB1), CHL also was highly effective
against the direct-acting intermediate AFB1–8,9-epoxide
in the absence of a metabolic activation system [13, 14].
Molecular docking in silico and spectrophotometric ti-
tration experiments supported a dissociation constant of
Kd = 1.4 ± 0.4 μM for the AFB1-CHL complex. In rain-
bow trout, AFB1-CHL coadministration in the diet
produced concentration-dependent inhibition of AFB1-
DNA adducts in the liver at 2 weeks by CHL, and pre-
dicted precisely the reduced incidence of hepatocellular
carcinoma 9 months later [28–31].
Notably, hepatic AFB1-DNA adducts were reduced sig-

nificantly in the rat and rainbow trout following simul-
taneous oral gavage administration of the carcinogen
with either CHL or natural Chla [31, 32]. The inhibition
of multiorgan carcinogenesis occurred independently of
changes in hepatic enzyme activities, supporting a mech-
anism involving complex-mediated reduction of carcino-
gen uptake in vivo [31, 32].
In a landmark report [33], the bioavailability of afla-

toxin was reduced significantly in human volunteers by
CHL or natural Chla isolated from spinach, using the
sensitivity of accelerator mass spectrometry to detect
microdosing levels in plasma and urine [34]. These find-
ings extended prior work demonstrating that CHL inter-
vention via an oral supplement reduced aflatoxin-DNA

adducts in individuals at high risk for liver cancer [35,
36]. Highlights from the associated literature illustrate
the continuum from mechanistic studies in vitro, to pre-
clinical validation in animal models, and subsequent hu-
man translation (Fig. 2; silhouettes indicate trout, rat,
and human translational aspects).

Interception of polycyclic aromatic hydrocarbons by
chlorophylls
Based on prior work [37] establishing the inhibitory ac-
tions of CHL and related pyrrole pigments against the
mutagenicity of benzo [a] pyrene (BaP), detailed molecu-
lar mechanisms were investigated in vitro [15]. In the
Salmonella assay, CHL inhibited the mutagenic activity
of BaP in the presence of a metabolic activation system,
and it was especially effective against the direct-acting
ultimate carcinogen benzo [a]pyrene-7,8-dihydrodiol-9,
10-epoxide (BPDE) in the absence of exogenous mam-
malian liver enzymes. Time-dependent hydrolysis of
BPDE to inactive tetrols was observed in the presence of
5 μM CHL, whereas molecular complex formation with
the procarcinogen (BaP) and the inhibition of cyto-
chrome P450-related enzymatic activities necessitated
higher CHL concentrations (> 100 μM). At these con-
centrations, CHL inhibited NADPH-cytochrome P450
reductase activity, rather than binding directly to the ac-
tive site of cytochrome P450. Molecular models of the
BPDE:CHL complex revealed minimization energies in

Fig. 1 Chlorophyllin (CHL), a water-soluble derivative of natural chlorophyll, is an interceptor molecule of heterocyclic amines. a
Spectrophotometric titration studies identified molecular complex formation between CHL and the cooked meat mutagen 2-amino-3-
methylimidazo [4,5-f] quinoline (IQ). b Benesi-Hildebrand plot and molecular docking in silico of the CHL-IQ complex. Dissociation constants also
were defined for other dietary heterocyclic amines, with complexes involving 1:1 or 2:1 stoichiometry. c In vitro, the kinetics of IQ-DNA binding
indicated competitive inhibition by CHL. d In vivo, co-administration of CHL and IQ by single oral gavage reduced IQ-DNA adducts significantly in
the rat liver (*P < 0.05). e Inhibition of IQ-induced tumorigenesis in the rat following co-treatment with CHL and IQ for 1 year. From the author’s
published reports [19–26]
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the range − 16.9 to − 20.8 kcal/mol, with multiple π-π in-
teractions of the overlapping aromatic ring systems, and
the epoxide moiety of BPDE oriented towards acid
(carboxyl) groups or the methylene bridge in CHL. It
was concluded that the primary mechanism of CHL
towards BaP in vivo involved preferential molecular
complex formation with BPDE, leading to the rapid deg-
radation of the ultimate carcinogen [15].
In female ICR mice, oral gavage dosing of CHL 30min

before either BaP or BPDE were given by topical admin-
istration resulted in significant inhibition of skin tumori-
genesis, and CHL was rapidly distributed to the skin and
other tissues [38]. The authors concluded that, under
the experimental conditions used, the inhibition of skin
carcinogenesis in mice was consistent with the inter-
ceptor molecule hypothesis.
Dibenzo [def,p] chrysene (DBC) – formerly known as

dibenzo [a,l] pyrene – is a structurally-related environ-
mental agent of BaP that has greater carcinogenic
potency due to the presence of a ‘fjord’ region rather
than a ‘bay’ region, which stabilizes the reactive epoxide
intermediate [39]. In the rainbow trout, hepatic DBC-
DNA adducts were inhibited significantly when the
carcinogen was co-administered in the diet for 2 weeks

with either CHL or natural Chla [40]. Spectrophotomet-
ric titration studies supported a direct interaction be-
tween DBC and either CHL or Chla. Thus, a 2:1
complex was observed for CHL-DBC, with Kd1 =
1.38 μM and Kd2 = 1.17 μM, whereas the 2:1 Chla-DBC
complex had Kd1 = 4.44 μM and Kd2 = 3.30 μM [41].
Pharmacokinetic data revealed that CHL and Chla both
lowered the systemic bioavailability of DBC to the liver
and other tissues, consistent with the effective antitumor
activity in this animal model [41, 42]. In the mouse,
CHL provided effective chemoprotection in a DBC-
induced transplacental carcinogenesis model, and
supported a mechanism involving complex-mediated re-
duction of carcinogen uptake [43]. These findings
suggest that additional studies are warranted on the
beneficial effects of CHL and Chla towards other envir-
onmental carcinogens and complex mixtures [44].
Mechanistic aspects for CHL and Chla towards polycyc-
lic aromatic hydrocarbons in vitro and in vivo were
highlighted in Fig. 3.

Non-interceptor mechanisms of chlorophylls
Despite the simplicity and attractive nature of the
interceptor molecular hypothesis, it was known from

Fig. 2 CHL and natural chlorophyll a (Chla) act as interceptor molecules against aflatoxin B1 (AFB1). a Antimutagenic activity of CHL against
AFB1–8,9-epoxide in the Salmonella assay, in the absence of a metabolic activation system, with complex formation supported by molecular
docking in silico. b CHL inhibits AFB1-DNA binding and hepatocellular carcinoma in rainbow trout, and is more effective than Chla at inhibiting
AFB1-DNA adducts in trout liver (****P < 0.0001, ***P < 0.001). c CHL and Chla inhibit AFB1-DNA adducts in rat liver (**P < 0.01). d Accelerator mass
spectrometry revealed that oral administration of CHL or Chla both lowered AFB1 uptake and bioavailability in human volunteers. This work
highlights the continuum from mechanistic to preclinical to human translational findings [14, 28–36]
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early antimutagenicity work in vitro that CHL also
was effective against N-methyl-N′-nitro-N-nitrosogua-
nidine [44]. This small alkylating agent lacks the aro-
matic ring system for stable molecular complexes
involving multiple π-π interactions. Investigations
with other small non-aromatic compounds, such as 1,
2-dimethylhydrazine, azoxymethane and diethylnitro-
samine, identified tumor modulatory activity even in
post-initiation protocols, in which the carcinogen
treatment phase had been completed before the
addition of CHL or Chla [45–55]. In some reports,
the apparent tumor promoting activities may have
been related to impurities in commercial CHL prepa-
rations [56, 57], which contained a mixture of
sodium-potassium salts and chlorins [28], sometimes
detectable in human plasma during clinical trials [35].
However, further investigation confirmed that CHL in-

deed exhibited mechanisms beyond molecular complex

formation. The large tetrapyrrole macrocycle found in
chlorophylls, chlorins, and other porphyrins has a
high degree of unsaturation, which implicated free
radical scavenging, antioxidant, anti-inflammatory,
immune-modulatory and photodynamic properties.
These aspects have been discussed previously for
chlorophyllin and related porphyrins, including the ef-
fects on Wnt/β-catenin signaling and other deregu-
lated pathways in cancer [58–76].
To examine mechanisms that go beyond molecular

complex formation, human colon cancer cells were incu-
bated with CHL across a broad range of concentrations
[77, 78]. Fluorescence-activated cell sorting (FACS)
analysis revealed that CHL-treated cells underwent S-
phase arrest, and at higher concentrations a sub-G1 peak
was detected, indicative of apoptosis [77]. Cells entering
S-phase arrest exhibited a concentration-dependent loss
of bromodeoxyuridine (BrdU) incorporation in FACS-

Fig. 3 Chlorophylls as interceptor molecules of environmental polycyclic aromatic hydrocarbons. a Interaction of CHL with benzo [a]pyrene-7,8-
dihydrodiol-9,10-epoxide (BPDE). Absorption spectra for BPDE (dashed line), CHL (dotted line), and BPDE+CHL (solid line) in Tris-HCl buffer, pH 7.4,
20 °C. Inset: difference spectrum for the BPDE/CHL complex. b Time-dependent hydrolysis of BPDE in presence and absence of CHL. Upper panel:
the hydrolysis of 10 μM BPDE to tetrols was recorded at 5-min intervals in Tris-HCl buffer, pH 7.4, 20 °C. Lower panel: repeat of the above
experiment in the presence of 5 μM CHL. Numbers adjacent to spectra indicate the time in minutes at which each spectrum was recorded. The
pseudo-first-order hydrolysis rate constant of BPDE to tetrols was 1.76 ± 0.67 in buffer and 8.37 ± 0.82 in buffer containing CHL (kH (s− 1) × 103). c
Energy minimized molecular model of the BPDE:CHL complex. Initial structures of CHL (top) and BPDE (bottom) were constructed using MM2
force field parameters and conjugate gradient methods. Complexes were obtained by first energy minimizing the structures of CHL and BPDE
separately, then placing each molecule within Van der Waals radii and energy minimizing the corresponding complex. After multiple iterative
docking experiments, complexes consistently had the epoxide oriented towards acid (carboxyl) groups or the methylene bridge in CHL, with
minimization energies in the range − 16.9 to − 20.8 kcal/mol. Complexes were minimized to a gradient of 0.001 kcal/mol and calculations were
performed using HyperChem (Release 2, Autodesk). d Natural Chla complexes with dibenzo [def,p] chrysene (DBC). e Chla and CHL lower the
bioavailability of DBC and (inset) DBC-DNA adducts detected in trout liver (***P < 0.001). f Concentration-dependent inhibition of DBC-induced
tumorigenesis in the rainbow trout. From published reports [15, 40–42]
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based pulse-chase experiments. This was analogous to
prior studies with chemotherapeutic drugs, such as hy-
droxyurea, that inhibited ribonucleotide reductase (RNR)
activity by scavenging the tyrosyl radical involved in the
catalytic mechanism [79–83]. Subsequently, CHL was
confirmed to downregulate the expression of the large
and small subunits of RNR, namely R1, R2 and p53R2,
and to directly inhibit RNR enzymatic activity [78].
At higher concentrations, colon cancer cells exhibited

the hallmarks of apoptosis, such as membrane blebbing
and nuclear condensation, without the classical apop-
totic ‘ladder’ in gel-based experiments [77]. Although a
change in mitochondrial membrane potential was de-
tected (Δψm), this was not accompanied by the release of
cytochrome c or the activation of Caspase-9, Caspase-3,
and poly (ADP-ribose) polymerase (PARP) cleavage.
However, a cytochrome c-independent apoptotic mech-
anism was confirmed that involved Caspase-8, Caspase-
6, the release from mitochondria of apoptosis inducing
factor (AIF), and the cleavage of nuclear lamins [77].
This work advanced key concepts beyond prevention by

an ‘interceptor molecule’ towards late-stage cancer inter-
ception, via mechanisms that impacted cell cycle regula-
tion and apoptosis (Fig. 4).
Finally, epigenetic avenues remain to be pursued in vivo,

beyond the downregulation of histone deacetylases in
hamster-cheek pouch carcinomas by CHL [84], and the al-
tered microRNA signatures in PhIP-induced rat colon tu-
mors after feeding chlorophyll-rich spinach [85]. Antiviral
aspects of CHL also are highly noteworthy [86].

Conclusions
In conclusion, chlorophylls can act as interceptor mole-
cules of environmental carcinogens and mutagens, but
also exhibit additional mechanisms that impact the con-
tinuum of cancer initiation, promotion and progression.
As the science evolves, interesting new mechanistic leads
point to the potential use of chlorophylls and their deriv-
atives for cancer interception, in its broadest context [1].
Thus, further research appears to be warranted, beyond
the historical clinical applications and the current use of

Fig. 4 CHL triggers cell cycle arrest and apoptosis in human colon cancer cells. a In CHL-treated HCT116 cells, fluorescence-activated cell sorting
(FACS) identified cells arrested in S-phase, with the appearance of a sub-G1 peak at higher CHL concentrations, indicative of apoptosis. b S-phase
arrest by CHL was concentration dependent. c FACS analysis combined with bromodeoxyuridine (BrdU) pulse-chase experiments corroborated
the S-phase arrest, with BrdU incorporation localized to G0/G1 and G2/M lower quadrants. d The floating cell number increased with CHL
concentration, and cells exhibited hallmarks of apoptosis such as membrane blebbing and nuclear condensation, coinciding with reduced
mitochondrial membrane potential (Δψm), arrow. e Detailed mechanistic studies excluded the pathway involving cytochrome c, Caspase-9,
Caspase-3 and poly (ADP-ribose) polymerase (PARP) cleavage, and implicated Capase-8, Caspase-6, cleavage of nuclear lamins, and apoptosis
inducing factor (AIF) released from mitochondria. At lower CHL concentrations, S-phase arrest involved the inhibition of ribonucleotide reductase,
possibly by scavenging the tyrosyl radical in the enzyme active site, akin to the anticancer drug hydroxyurea. Synopsis of author’s prior
mechanistic work [77, 78]
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such natural and synthetic agents as food additives [87–
90], directed towards environmental carcinogens and the
human translational aspects [91–100].
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