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Abstract

Cancer is one of the main health challenges and leading causes of deaths in the world. Various environmental and
genetic risk factors are associated with tumorigenesis. Epigenetic deregulations are also important risk factors during
tumor progression which are reversible transcriptional alterations without any genomic changes. Various mechanisms are
involved in epigenetic regulations such as DNA methylation, chromatin modifications, and noncoding RNAs. Cancer
incidence and mortality have a growing trend during last decades among Iranian population which are significantly
related to the late diagnosis. Therefore, it is required to prepare efficient molecular diagnostic panels for the early
detection of cancer in this population. Promoter hyper methylation is frequently observed as an inhibitory molecular
mechanism in various genes associated with DNA repair, cell cycle regulation, and apoptosis during tumor progression.
Since aberrant promoter methylations have critical roles in early stages of neoplastic transformations, in present review
we have summarized all of the aberrant methylations which have been reported during tumor progression among
Iranian cancer patients. Aberrant promoter methylations are targetable and prepare novel therapeutic options for the
personalized medicine in cancer patients. This review paves the way to introduce a non-invasive methylation specific
panel of diagnostic markers for the early detection of cancer among Iranians.
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Background
Cancer is the main and second cause of death in devel-
oped and developing countries, respectively [1]. It is the
third most common cause of death among Iranian popu-
lation [2]. Gastric and breast cancers are the most com-
mon malignancies among Iranian men and women,
respectively [3]. Lifestyle and environmental changes
were occurred during the recent years due to the rapid
industrialization in Iran [1]. Various environmental risk
factors including tobacco smoking, environmental che-
micals, high dietary salt intake, bacterial and viral infec-
tions, and gastro-esophageal reflux have been reported

for cancer among Iranians [4–6]. Epigenetic involves the
heritable and reversible transcriptional changes without
any DNA sequence alterations which are involved in the
early stages of tumor progression, embryogenesis, im-
printing, and X-chromosome inactivation [7, 8]. It is reg-
ulated via different processes such as DNA methylation,
chromatin modifications, and noncoding RNAs that play
critical roles during tumor initiation and progression [9–
11]. DNA methylation involves the transfer of a methyl
group to the cytosine that is catalyzed by DNA methyl-
transferase (DNMT) [12, 13]. DNMT inhibitors are
categorized into the nucleoside analogs and the non-
nucleoside inhibitors [14]. The azacytidine and decitabine
as nucleoside analogs are the most common DNMT in-
hibitors and epigenetic modulators in cancer therapy [15].
Non-nucleoside compounds such as hydralazine and
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procainamide inhibit the methylation through a DNA in-
corporation independent mechanism [14]. Curcumin be-
longs to the Non-nucleoside DNMT inhibitors that bind
with DNMT1 catalytic domain [16]. DNA hypo methyla-
tion leads to aberrant activation of oncogenes while the
hyper methylation is associated with inhibition of tumor
suppressor genes. Various tumor suppressor genes such as
p16, MutL homolog 1 (MLH1), and breast cancer type 1
susceptibility protein (BRCA1) which are involved in
DNA repair, cell cycle, cell adhesion, and apoptosis have
been shown to undergo tumor-specific silencing by hyper
methylation [17–19]. Histone modifications through his-
tone acetyl-transferase (HATs), histone methyltransferase
(HMTs), kinases, ubiquitin ligases, and sumoligases are
important regulatory processes in chromatin remodeling,
gene expression, and carcinogenesis [20, 21]. Micro RNAs
are also the post transcriptional regulators of more than
60% of protein-coding genes during various cellular pro-
cesses that can be associated with tumorigenesis [22, 23].
Epigenetic markers are considered as emerging diagnostic
and prognostic biomarkers in cancer [24, 25]. Since, aber-
rant DNA methylation can be tracked in body fluids; they
can be suggested as efficient diagnostic and prognostic
markers in primary stages of tumor progression [26–29].
It has been reported that the majority of cancer related
deaths among Iranian cases are associated with late diag-
nosis. Therefore, it is required to determine novel diag-
nostic markers for the early detection of cancer in this
population. In present review we have summarized all of
the significant epigenetic deregulations associated with
tumor progression which have been reported until now
among Iranian cancer patients (Fig. 1) (Table 1).

DNA repair
DNA hyper methylation of tumor suppressor genes have
been reported in immortalized and transformed cells
[73]. The O6-methylguanine DNA methyltransferase

(MGMT) is involved in methylated guanosine repair
through removing alkyl group from O6-alkyl guanine
[74]. CDH1 as a cell-cell adhesion factor has a critical
function in regulation of cell differentiation and normal
structure of epithelial cells [75–77]. The MGMT and
CDH1 promoter methylations were assessed among a
sample of Iranian OSCC patients compared with normal
margins. It has been observed that there were CDH1
and MGMT promoter hyper methylations in majority of
cases. Moreover, there was a significant difference in
MGMT mRNA expression levels between OSCC pa-
tients and controls. It was concluded that the MGMT
methylation can be used as a proper marker of poor sur-
vival among Iranian patients with advanced OSCC [30].
Similarly, there was a significant inverse association be-
tween MGMT methylation and survival among a sample
of American oral cancer patients, while the frequency of
MGMT hyper methylation was noticeably lower than
that among Iranian patients [78]. BRCA1 is involved in
DNA repair, homologous recombination, and cell cycle
regulation [79]. P16 is also a regulator of G1 to S phase
during cell cycle progression [80]. Histone modification
and DNA methylation of MGMT, BRCA-1, and P16
were assessed in a sample of Iranian breast cancer pa-
tients. It has been shown that the promoter methylation
of MGMT and BRCA-1 were higher in malignant breast
tumor (MBT) compared with benign breast tumor
(BBT) cases, while the P16 promoter methylation was
lower in MBT patients compared with BBT. There was a
significant correlation between BRCA1 hyper methyla-
tion and poor survival. Moreover, MBT cases had hypo
methylation of histone H4 lysine 20 (H4K20) and hypo
acetylation of histone H3 on lysine 18 (H3K18). There
was a significant inverse association between H3K9ac
levels and tumor size in MBT cases [31]. Similarly, the
ratio of MGMT promoter methylation was significantly
higher in a sample of Chinese breast cancer patients
compared with controls. Moreover, there was a signifi-
cant converse correlation between MGMT methylation
and levels of MGMT protein expression [81]. TP53 en-
codes a phosphoprotein involving in regulation of apop-
tosis, cell cycle, DNA repair, and differentiation [82]. It
has been observed that there was a significant inverse as-
sociation between MGMT promoter methylation and
P53 expression among a sub population of Iranian glio-
blastoma patients. They showed MGMT methylation in
about half of the patients [32]. P53 is stabilized by post-
translational modification in the primary stages of glio-
blastoma progression [83]. The MGMT suppression
induces p53 mutation which can further deregulate the
methylation pattern of MGMT [84]. The role of MGMT
promoter methylation in glioblastoma progression was
also assessed among German cases and was shown that
there was a correlation between MGMT promoter

Fig. 1 all of the aberrant methylations involved in tumor
progression among Iranian population. Blue and red colors refer to
the hypo and hypermethylation, respectively
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Table 1 all of the aberrant methylations which have been reported among Iranian cancer patients

Gene Year Type population sample Results study (ET AL)

dna repair

MGMT, CDH1 2010 Oral 57N/76Ta Tissue Hyper methylation. Kordi-Tamandan [30]

MGMT, BRCA-1 2019 Breast 27 MTb

31 BTc
Tissue Hyper methylation in MT. Paydar [31]

MGMT, p53 2009 Glioblastoma 50 patients Tissue MGMT hyper methylation was
correlated with p53 expression.

Shamsara [32]

MGMT 2013 Colorectal 40 patients
30 controls

Tissue Hyper methylation. Farzanehfar [33]

MGMT 2018 Colorectal 70 patients Serum Hyper methylation. Alizadeh Naini [34]

hMLH1, CDH1 2014 Gastric 51 patients Tissue Hyper methylations were
correlated with stage.

Moghbeli [35]

cell adhesion

RASSF6, RASSF10 2017 Lymphoblastic leukemia 45 patients Blood Hyper methylation. Younesian [36]

HIC1,RASSF1A 2009 Breast 81 patients
100 controls

Tissue Hyper methylation. Rasti [37]

P16, TSHR, RASSF1A, 2011 Thyroid 25MT
25BT

Tissue Hyper methylation. Mohammadi-asl [38]

Integrin a4, CDH1 2015 Prostate 30 patients
40 benign

Tissue Hyper methylation. Mostafavi-Pour [39]

CDH1 2016 Breast 98T/10N Tissue Hyper methylation. Naghitorabi [40]

CDH1 2014 Breast 50 N/T Tissue Hyper methylation. Shargh [41]

SPG20 2017 Colorectal 32 N/T Serum Hyper methylation. Rezvani [42]

cell cycle

P14ARF 2010 Oral 76 patients
57 controls

Tissue Hyper methylation. Kordi-Tamandani [43]

P16INK4a, p53, p16, MDM2 2010 Esophageal 50 N/T Tissue P16 hyper methylation was
correlated with p53 expression.

Taghavi [44]

P16 2005 Esophageal 58 patients
30 controls

Blood Hyper methylation. Abbaszadegan [45]

P16 2018 Oral 67 patients
59 controls

Tissue Hyper methylation was
correlated with grade.

Allameh [46]

P15INK4a, p16INK4a 2012 Oral Tissue Hyper methylation. Kordi-Tamandani [47]

P16 2009 Breast 70 patients Hyper methylation. Vallian [48]

P16 2008 Gastric 52 patients
50 controls

Serum Hyper methylation. Abbaszadegan [49]

DBC2 2012 Breast 50 patients
35 controls

Tissue Hyper methylation. Hajikhan Mirzaei [50]

14-3-3 sigma 2012 Breast 20 patients
20 controls

Tissue Hyper methylation. Gheibi [51]

UBE2Q1, UBE2Q2 2015 Colorectal 60 N/T
20 BT

Tissue UBE2Q2 hypo methylation,
UBE2Q1 hyper methylation.

Mokarram [52]

tyrosine kinases and g protein coupled receptors

VIM, CXCR4, DOK7 2018 Breast 60 patients
40 controls

Blood Hypo methylation. Shirkavand [53]

GHSR 2019 Gastric 22 N/T Tissue Hyper methylation. Amini [54]

EDNRB 2017 Colorectal 45 N/T Tissue Hyper methylation. Mousavi Ardehaie [55]

signaling pathways

APC, DDK3, SFRP2, SFRP4,
SFRP5, WIF1, WNT5A

2014 Colorectal 125 N/T Tissue Aberrant methylations. Samaei [56]

APC 2009 Esophageal 45 N/T Tissue Hyper methylation. Zare [57]
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methylation and survival in newly diagnosed patients
[85]. It has been observed that there were significantly
higher levels of MGMT promoter methylation in tumors
compared with controls in a sample of Iranian colorectal
cancer (CRC) patients. Moreover, they observed the
MGMT promoter methylation in normal margins [33].
Another group also assessed the serum MGMT methyla-
tion which showed that the majority of a sample of Iran-
ian CRC tumors had MGMT promoter methylation
which were mainly moderately differentiated and located
on left colon [34]. Similarly, MGMT promoter methyla-
tion has been reported in majority of brain metastases
from CRC and corresponding primary tumors in a group
of Italian patients [86]. The placenta have also a charac-
teristic of tumor cells for a successful implantation of
the embryo in uterus during early pregnancy, in which it
invades into the host tissues, escapes from immune re-
sponse, and promotes angiogenesis. There are similar
DNA methylation patterns between the tumors and

placenta. The expression profile of the genes located
within cancer/placenta hypomethylated blocks were
assessed for CRC that showed the epigenetic regulation
of NF-kB signaling during tumorigenesis and placento-
genesis [87]. Human mutL homolog 1 (hMLH1) is one
of the components of mismatch repair (MMR) system
that is involved in the replacement of incorrectly paired
nucleotides during DNA replication [88]. Therefore, the
MMR aberrations can be associated with tumor progres-
sion [89, 90]. E-cadherin is a cell adhesion glycoprotein
which is related to the tumor metastasis in a hyper
methylated status [91]. It has been observed that there
was a significant inverse association between the levels
of hMLH1 mRNA expression and promoter methylation
status in a sample of Iranian gastric cancer patients.
Moreover, the hMLH1 hyper methylated tumors were
significantly observed in advanced stage tumors. The E-
cadherin promoter methylation was also significantly
correlated with tumor stage and location [35].

Table 1 all of the aberrant methylations which have been reported among Iranian cancer patients (Continued)

Gene Year Type population sample Results study (ET AL)

SFRP2 2016 Colorectal 25 patients
25 controls

Fecal Hyper methylation. Babaei [58]

PTEN, miR-21 2016 Colorectal 125 N/T Tissue MiR-21 over expression,
PTEN under expression.

Yazdani [59]

PTEN 2011 Breast 53 patients
20 controls

Tissue Hyper methylation. Sadeq [60]

PTEN 2016 Breast 103 patients
102 controls

Blood Hyper methylation. Yari [61]

developmental factors

ALX4 2015 Colorectal 25 patients
25 controls

Serum Hyper methylation. Salehi [62]

PAX5 2018 Gastric 35 patients
35 controls

Blood Hyper methylation. Haghverdi [63]

MiR-129-2 2019 Gastric 50 N/T Tissue Hyper methylation. Alizadeh [64]

nuclear receptors

ER-a (ER3,4,5) 2012 Breast 60 patients Tissue Hyper methylation. Ramezani [65]

ER-a 2012 Breast 100 patients Tissue Hyper methylation. Izadi [66]

ER-a 2012 Breast 49 patients
51 controls

Tissue Izadi [67]

RARB, p16 2011 Prostate 42 patients
21 controls

Tissue Hyper methylation. Ameri [68]

apoptosis

APAF1,CASP8 2018 Gastric 30 patients
30 controls

Blood Hyper methylation. Azarkhazin [69]

FADD, FAS 2014 Oral 86 patients
68 controls

Tissue FAS promoter hyper methylation. Saberi [70]

ATM 2015 Brain 30 patients
2 controls

Tissue Hyper methylation. Mehdipour [71]

CTLA4 2014 Gastric 85 N/T Tissue Hyper methylation. Kordi-Tamandani [72]
a Tumor tissues and normal margins.
b Malignant tumors.
c Benign tumors
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Cell adhesion
Ras association domain family (RASSF) consists of 10
proteins that act as scaffolding agents in microtubule
stability, mitotic cell division, apoptosis, cell migration,
cell adhesion, inflammation, and NF-kB regulation [92].
RASSF6 and RASSF10 stabilize P53, regulate the cell
cycle, inhibit tumor cell migration, and induce apoptosis
[93–97]. Moreover, they are involved in regulation of
NF-kB and WNT signaling pathways [93, 98]. Methyla-
tion status of RASSF6 and RASSF10 were assessed in a
sample of Iranian Acute lymphocytic leukemia (ALL)
cases. It was observed that the RASSF6 methylation was
more frequent in B-Cell Acute Lymphoblastic Leukemia
(B-ALL) cases compared with T-cell acute lymphoblastic
leukaemia (T-ALL) cases, whereas the RASSF10 hyper
methylation was more frequent in T-ALL compared
with pre-B-ALL and B-ALL patients. Moreover, there
was a significant correlation between RASSF6 hyper
methylation and poor prognosis in pre-B-ALL patients
which can be related to the NF-kB activation in the ab-
sence of RASSF6 [36]. HIC1 is a transcriptional suppres-
sor involved in embryogenesis, P53 dependent apoptosis,
cell cycle regulation, and WNT signaling regulation. It
has been reported that there were significant correla-
tions between tumor sizes more than 2 cm, lymph node
involvement, and HIC1 methylation among a sub popu-
lation of Iranian breast cancer patients. Moreover, there
was a significant association between SASSF1A and
HIC1 promoter methylation. It was concluded that the
HIC1 and RASSF1A hyper methylations can be used as
prognostic markers of breast cancer in this population
[37]. Similarly, the RASSF1A methylation has been
shown as an efficient prognostic marker in a sample of
Saudi breast cancer patients [99]. Thyroid Stimulating
Hormone Receptor (TSHR) is involved in growth and
function of thyrocytes through stimulation of iodine up-
take by NIS and iodine oxidation by thyroid peroxidase
[100]. The RARb2 is a thyroid-steroid hormone receptor
which is involved in embryogenesis through binding
with retinoic acid [101]. It has been reported that there
were higher rates of p16, TSHR, and RASSF1A hyper
methylations in a sample of Iranian malignant papillary
thyroid tumors compared with benign tumors [38].
TSHR methylation status was also introduced as a tumor
marker for well-differentiated thyroid cancer among
Turkish patients [102]. Integrin α4 binds with integrin
β1 and β7 which are associated with cell adhesion to fi-
bronectin [103]. The α4 integrin hyper methylation was
observed in the majority of an Iranian prostate cancer
patients group [39]. E-cadherin (CDH1) is a trans-
membrane glycoprotein mainly expressed on the epithe-
lial cells surface which is involved in Ca2+-dependent
intracellular adhesion. CDH1 down regulation is associ-
ated with invasiveness and poor prognosis [104–106]. It

has been shown that the tumor tissues had higher rates
of CDH1 hyper methylation compared with normal sam-
ples in Iranian breast cancer patients. Moreover, there
were significant associations between CDH1 promoter
methylation, stage, grade, lymph node metastasis, and
tumor size [40]. Another study on Iranian breast cancer
cases also showed a significant higher ratio of CDH1
promoter hyper methylation in tumors compared with
normal tissues [41]. The SPG20 is a multifunctional pro-
tein involved in intracellular EGFR traffic, cytokinesis,
lipid droplet turnover, bone morphogenetic protein
(BMP) signaling inhibition, and E3 ubiquitin ligases
regulation [107–111]. It has been observed that the per-
centage of methylated reference (PMR) values in plasma
samples of CRC patients were significantly higher than
that in the healthy individuals among a sub population
of Iranian subjects. The receiver-operating characteris-
tics (ROC) curve analysis showed a sensitivity of 81.1%
which was significantly higher than carcinoembryonic
antigen (CEA) tumor marker (48.6%). Therefore, plasma
SPG20 promoter methylation status can be an efficient
noninvasive biomarker for CRC among Iranians [42].

Cell cycle
P14ARF is a cell cycle regulator that inhibits the MDM-
2 mediated degradation of p53 [112–114]. It has been
reported that there was higher ratio of p14ARF methyla-
tion in a sample of Iranian oral squamous cell carcinoma
(OSCC) patients compared with controls which was also
directly correlated with tumor stage [43]. Similarly, It
was reported that there were significant associations be-
tween p14ARF hyper methylation, advanced stages, and
lymph node involvement among Japanese OSCC pa-
tients [115]. The p53, p16INK4a, and MDM2 have crit-
ical roles during cell cycle regulation [116]. MDM2 is an
oncogene that inactivates p53 during tumorigenesis
[117, 118]. The G1 to S cell cycle progression is regu-
lated by CCND1 in relationship with CDK 4/6 which is
suppressed by the inhibitor of cyclin dependent kinase 4
(INK4) [119]. The INK4 family includes p19INK4D,
p15INK4B, p18INK4C, and p16INK4A [112]. It has been
shown that the p16INK4A inhibits G0/G1 cell cycle
through suppression of CCND1–CDK4/6 complex. The
p16INK4A also functions as a negative regulator of ret-
inoblastoma protein (Rb) and regulates the cell cycle in
G1/S phase in a p53-dependent pathway through CDK4
and CDK6 inhibitions [120, 121]. It has been observed
that there was a significant inverse correlation between
p16 hyper methylation and P53 expression in a sample
of Iranian esophageal squamous cell carcinoma (ESCC)
patients [44]. The serum p16 promoter hyper methyla-
tion was associated with poor prognosis among Japanese
ESCC patients [122]. Another study on Iranian subjects
assessed the p16 methylation status between familial and
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sporadic ESCC cases compared with healthy subjects. It
was shown that the sporadic cases had higher ratio of
p16 methylation compared with familial ESCC cases,
while there was not any p16 methylation among controls
[45]. Similarly, p16 methylation rate in sporadic was
higher than that in familial Korean colorectal cancer pa-
tients [123]. Another group has been reported that there
were direct correlations between p16 hyper methylation,
tumor grade, HP infection, and smoking in a subpopula-
tion of Iranian OSCC cases [46]. Another group has
been reported that there was higher ratio of p16 and p15
methylations in tumors compared with normal margins
in a sample of Iranian OSCC patients [47]. The aberrant
methylation of the p15 and p16 have been also reported
during OSCC progression among Japanese patients
[115]. The p16 promoter hyper methylation was also in-
volved in primary stages of sporadic breast cancer in
Iranian patients [48]. Another study on Iranian gastric
cancer patients showed that the P16 hyper methylation
was less frequent in well-differentiated tumors and more
frequent in older patients [49]. DBC2 is a tumor sup-
pressor gene that functions through down-regulation of
CCND1 [124]. It is also involved in regulation of ubiqui-
tination, cell cycle, protein transport, apoptosis, and
cytoskeleton [125–128]. It has been reported that there
was significantly higher frequency of DBC2 methylation
in tumor and blood samples of a group of Iranian breast
cancer patients compared with normal margins [50].
Similarly, a study on Chinese breast cancer patients
showed higher DBC2 methylation in breast tumors com-
pared with normal tissues. Moreover, there was a signifi-
cant correlation between DBC2 promoter methylation
and lymph node metastasis [129]. The 14-3-3σ is a p53-
related G2/M suppressor associated with DNA repair
and apoptosis [130, 131]. It has been reported that there
was higher ratio of 14-3-3σ promoter methylation in a
sample of Iranian breast tumors compared with normal
tissues [51]. Similarly, 14-3-3σ promoter methylation
was higher in Chinese breast tumors compared with be-
nign and normal tissues [132]. Ubiquitin-proteasome sys-
tem (UPS) has a critical role in cell cycle regulation [133,
134]. The protein modification by ubiquitin is an import-
ant strategy for the elimination of abnormal proteins. UPS
is also associated with pathophysiological processes during
tumor progression [133]. Ubiquitination is performed by
ubiquitin-activating enzymes (E1), ubiquitin-conjugating
enzymes (E2), and ubiquitin-protein ligases (E3). UBE2Q2
and UBE2Q1 are members of E2 ubiquitin-conjugating
enzyme family [135]. UBE2Q2 functions as an oncogene
during CRC initiation and progression [136, 137]. It has
been observed that there were higher levels of methylated
UBE2Q1 in colorectal tumor samples compared with nor-
mal margins among a sub population of Iranian subjects
[52]. Aberrant methylation of cell cycle regulators during

tumor progressions among Iranian patients are illustrated
in Fig. 2.

Tyrosine kinase and G-protein-coupled receptors
The downstream of tyrosine kinase type 7 (DOK7) is an
adaptor protein that induces the acetylcholine receptors
(AChR) through muscle-specific kinase (MUSK) [138,
139]. It also inhibits proliferation and migration of can-
cer cells via AKT signaling pathway [140]. The vimentin
is an intermediate filament that plays important roles in
epithelial mesenchymal transition (EMT), immune re-
sponse, and cytoskeleton structure [141–144]. CXCR4
(C-X-C chemokine receptor type 4) is a receptor in-
volved in calcium signaling, transcription, chemotaxis,
cell survival, and proliferation. The CXCR4 promoter
hypo methylation has been detected in melanoma,
breast, and pancreatic cancers [145, 146]. SAM pointed
domain containing ETS transcription factor (SPEDF) is a
tumor suppressor involved in tumor progression via
p21/CIP1 regulation [147, 148]. It has been reported that
there were significant DOK7, VIM, and CXCR4 hypo
methylations in a sub population of Iranian breast can-
cer cases compared with normal subjects. Moreover,
there were significant correlations between DOK7 and
VIM methylations and negative ER status [53]. Another
reports also showed DOK7 and VIM hyper methylations
in Spanish and Australian breast cancer patients, re-
spectively [140, 149]. The growth hormone secretagogue
receptor (GHSR) belongs to the G-protein-coupled re-
ceptor (GPCR) family which acts as a receptor for
ghrelin [150]. Ghrelin is associated with regulation of

Fig. 2 aberrant methylation of cell cycle regulators during tumor
progressions among Iranian patients
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glucose and lipid metabolism and activates Ca2+ and
P13K/AKT signaling pathways that are contributed with
secretion of growth hormone in pituitary cells [151–
153]. It has been reported that there was significant
hyper methylation of GHSR in a sample of Iranian gas-
tric cancer tissues compared with normal margins [54].
Similarly, GHSR hyper methylation was also observed in
Italian colorectal cancer tissues compared with normal
tissues [154]. Endothelin receptor type B (EDNRB) is a
G protein coupled receptor involved in embryonic and
enteric ganglia development [155–157]. Decreased ex-
pression of EDNRB leads to proliferation, angiogenesis,
and metastasis through ET1 signaling pathway during
tumor progression [158–160]. KISS1R is also a G-
protein coupled receptor that is associated with tumor
metastasis by ERK inhibition and MMP-9 reduction
[161, 162]. It has been reported that there was higher
frequency of EDNRB hyper methylation in a sample of
Iranian colorectal cancer tissues compared with normal
margins [55]. Similarly, the Chinese colorectal cancer tu-
mors had significantly higher frequency of EDNRB pro-
moter hyper methylation compared with normal tissues
[155].

Signaling pathways
The WNT signaling pathway is involved in embryogen-
esis and tumor progression [163–165]. DNA methylation
of APC, AXIN2, SFRP, and DKK as important WNT in-
hibitors have been reported in colorectal cancer patients
[166–169]. It has been observed that there were signifi-
cant correlations between APC and DDK3 aberrant pro-
moter methylations and age and sex, respectively among
a sub population of Iranian colorectal patients. The
SFRP4 and WIF1 promoter methylations were signifi-
cantly associated with stage and grade. Moreover, there
were significant correlations between SFRP2 and SFRP5
methylations and tumor type. Univariate analysis also in-
dicated the WIF1 promoter methylation as a prognostic
factor in colorectal cancer patients [56]. Adenomatous
polyposis coli (APC) is a tumor suppressor involved in
regulation of cell growth through WNT signaling. In
normal cells, free β-catenin is phosphorylated by Axin-
APC-GSK3β complex which results in β-catenin protea-
somal degradation and reduced expression of WNT sig-
naling target genes [170]. It has been reported that there
were higher rates of APC hyper methylation in tumor
tissues compared with normal tissues in a sample of
Iranian ESCC patients. Moreover, the hyper methylated
cases had lower survival rates. There was also a direct
association between APC promoter hyper methylation
and grade of tumor differentiation [57]. The Chinese
esophageal cancer tumors had also higher rates of APC
methylation compared with controls [171]. SFRP2 is one
of the negative regulators of WNT signaling pathway. It

has been observed that there were higher levels of SFRP2
hyper methylation in a sample of Iranian CRC patients
compared with healthy subjects [58]. Similarly, there
were also high levels of SFRP1 and SFRP2 hyper methyl-
ations among a group of Hungarian CRC patients [172].
Phosphatase and tensin homolog (PTEN) is a suppressor
of PI3K/AKT pathways which inhibits signal transduc-
tion from HER1, HER2, and IGFR growth factor recep-
tors through the P13K/AKT signaling [173, 174]. It
forms a nuclear complex with p53 to inhibit the p53 de-
composition [175, 176]. Moreover, it induces G0-G1 cell
cycle arrest by suppression of CCND1 and ERK/MAPK
pathway [177]. MiR-21 promotes tumor cell growth and
invasion by PTEN targeting [178–180]. It has been re-
ported that there was a significant association between
PTEN promoter methylation and expression in a sample
of Iranian colorectal cancer patients. The levels of PTEN
mRNA expressions were inversely associated with miR-
21 expression. Moreover, there were converse significant
associations between PTEN expression, tumor size, sur-
vival, and tumor stage [59]. Similarly, it has been ob-
served that there was a significant correlation between
PTEN promoter methylation and expression among
sporadic Indian breast cancer patients [181]. Another
study on Iranian sporadic breast cancer patients showed
that there were correlations between PTEN hyper
methylation, advanced stages, and lymph node involve-
ment. They suggested the PTEN promoter methylation
as a prognostic marker for the response to PTEN-
dependent therapy [60]. Iranian Kurdish breast cancer
patients also had a higher frequency of PTEN methyla-
tion compared with healthy controls. The female rela-
tives of patients had also a significantly higher frequency
of PTEN methylation compared with controls. More-
over, the PTEN methylation was higher in patients be-
tween 40-80 years old compared with patients who were
between 29–39 years old which showed increased PTEN
methylation in higher ages [61].

Developmental factors
Homeobox protein aristaless-like (ALX4) is a homeodo-
main transcription factor associated with bone, skin, and
hair follicle development [182, 183]. It has been reported
that there was a significant difference of ALX4 methyla-
tion status between a sample of Iranian colorectal cancer
patients and controls which introduced that as an effi-
cient marker for the early detection of colorectal cancer
in this population [62]. Similarly, ALX4 methylation was
observed among German patients with colorectal,
esophageal, and gastric cancers [184]. Paired Box 5
(PAX5) is belonged to the PAX family of tissue-specific
transcription factors associated with development and
embryogenesis. Deregulation of PAX5 has been observed
in various types of human tumors [185]. It is involved in
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neoplastic transformation through CD19 regulation
which suppresses growth regulators [186]. Moreover,
PAX5 is a functional tumor-suppressor in liver carcino-
genesis by P53 regulation [187]. Methylation status of
PAX5 was assessed in blood samples of Iranian gastric
cancer patients compared with healthy blood samples.
There were higher levels of PAX5 methylation in the
blood samples of patients compared with controls. There
were also significant correlations between the mean ex-
pression levels of PAX5, age, and promoter methylation
status [63]. It has been shown that there was a signifi-
cant correlation between PAX5 methylation and survival
in a sample of Chinese gastric cancer patients [188].
MicroRNAs (miRNAs) are one of the main factors in
gene regulation in normal and tumor tissues which func-
tion through 3’ un-translated region (3'UTR) dependent
translational inhibition [189–192]. The miRNAs expres-
sions are regulated by methylation, alkylation, and
acetylation [193–195]. MiR-192-2 induces the apoptosis
through targeting SOX4 in gastric tumor cells [196]. It
has been shown that there was a significant difference of
miR-129-2 methylation between a sample of Iranian gas-
tric cancer and healthy cases [64].

Nuclear receptors
Estrogen and its receptors are involved in breast epithe-
lial cell homeostasis through regulation of proliferation,
differentiation, and apoptosis. The methylation of estro-
gen receptors including ER-α and ER-β play important
role in primary breast cancer progression. Loss of ER-α
is an important mechanism of hormone resistance in
breast cancer [197–201]. It has been observed that there
was significantly higher ER4 methylation in tumors with
P53 expression among a sub population of Iranian breast
cancer patients. The ER5 methylation was observed in
tumors with lymph node metastasis and higher grades.
ER4 and ER5 methylations in postmenopausal females
were higher than that in premenopausal cases. There
was also significant higher frequency of ER5 methylation
in Her-2+ tumors. ER-α hyper methylation was fre-
quently observed in invasive ductal cell carcinoma pa-
tients. Moreover, there was a direct correlation between
ER5 methylation and age [65]. ER-α promoter methyla-
tion status in Egyptian breast cancer patients were
assessed using MSP method which showed higher ratio
of methylation in ER3 and ER5 compared with Iranian
patients [202]. Another study assessed the ER-α methy-
lation among Iranian breast cancer patients which
showed methylation in majority of basal and Her2+ tu-
mors. There was a correlation between ER-α methyla-
tion and poor prognosis in basal and Her2+ tumors.
They showed that the ER-α methylation plays an im-
portant role in aggressive breast tumors in this popula-
tion [66]. ER3 and ER5 methylations have been also

reported in majority of a sample of Iranian ER negative
breast tumors [67]. Retinoic acid receptor beta (RARB)
belongs to the thyroid-steroid hormone receptors which
bind with retinoic acid to mediate embryogenesis and
cell differentiation. It has been reported that there was
higher frequency of RARB hyper methylation in poor
prognosis cases compared with good prognosis in a sam-
ple of Iranian prostate cancer patients. The p16 hyper
methylation in poor prognostic cases was also higher
than patients with good prognosis [68]. Similarly, RARB
methylation was associated with a higher prostate cancer
risk among American patients [203].

Apoptosis
The apoptotic protease activating factor 1 (APAF1) and
caspase 8 (CASP8) genes are important regulators of
apoptotic pathways. Extrinsic apoptosis pathway is medi-
ated by CD95, FADD, and procaspase-8 in which the
CASP8 triggers the proteolytic activation of other cas-
pases and cleavage of cellular substrates [204–209].
Cytochrome c is released from the mitochondria follow-
ing DNA damage and binds to the APAF1 in cytosol
that results in CASP9, CASP3, CASP6, and CASP7 serial
activations and apoptosis [210, 211]. It has been shown
that there was a significant association between the
levels of APAF1 methylation, tumor stage, and grade in
blood samples of a subpopulation of Iranian gastric can-
cer patients. Moreover, the CASP8 methylation status in
blood samples of patients was significantly correlated
with age [69]. Chinese gastric cancer patients had also
significant higher ratio of APAF1 methylation in their
tumor tissues compared with normal margins [212]. Fas
belongs to the tumor necrosis factor receptor (TNF-R)
family that is normally expressed in lymph nodes and
spleen [213]. Fas Ligand (FasL) acts as a ligand for Fas
receptor that activates CASP8 through Fas-associated
death domain (FADD). Subsequently, CASP8 activates
CASP3 and CASP7 that mediate cell death. Moreover, it
cleaves BID to generate truncated BID which enters to
the mitochondria and triggers the mitochondrial apop-
totic pathway [214, 215]. It has been observed that there
was aberrant FAS promoter methylation in majority of a
sample of Iranian oral squamous cell carcinoma patients,
whereas the aberrant FADD methylation was observed
in a minority of cases [70]. Ataxia telangiectasia mutated
(ATM) is a serine threonine kinase which is activated by
DNA double-strand break (DSB). Deregulated expres-
sion of E2F1 transcription factor up regulates ATM that
leads to the apoptosis induction, cell cycle regulation,
and DNA repair via phosphorylation of CHK1, CHK2,
P53, and CDC25 [216, 217]. ATM promoter methylation
was more frequent in meningioma and glioma patients
in a sample of Iranian cases. There was a significant cor-
relation between higher grades of brain tumors and
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ATM promoter methylation. There was also a significant
association between ATM promoter methylation and RB
expression. Moreover, there was a significant association
between D1853N polymorphism and ATM promoter
methylation [71]. Another report assessed the promoter
methylation status of ATM among Indian breast cancer
cases which showed significant higher ratio of promoter
hyper methylation in tumor tissues compared with nor-
mal samples. Moreover, there were significant correla-
tions between ATM promoter methylation, age, tumor
size, and advanced tumor stages [218]. Cytotoxic T-
lymphocyte-associated antigen-4 (CTLA4) is a receptor
that acts as an immune check point in regulation of im-
mune responses and is expressed on activated T-cells
[219, 220]. It induces the PKB/AKT activation which up
regulates the BCL-XL/BCL-2 [221]. It has been observed
that there was significantly higher frequency of CTLA4

promoter methylation in a sample of Iranian gastric can-
cer patients compared with normal margins [72]. In con-
trast, a study on Qatari breast cancer patients showed
significant hypo methylation of CpG islands in promoter
region of CTLA-4 in tumors compared with normal
margins [222]. Role of aberrant methylations in regula-
tion of apoptosis during tumor progressions among
Iranian patients are illustrated in Fig. 3.

Conclusions
Regarding the recent life style changes, there is a grow-
ing cancer incidence and mortality in Iran which is re-
lated to the late diagnosis. Epigenetic markers are
considered as emerging diagnostic and prognostic bio-
markers in cancer. Therefore, in present review we sum-
marized all of the methylation abnormalities during
tumor progressions which have been reported until now

Fig. 3 role of aberrant methylation in regulation of apoptosis during tumor progressions among Iranian patients
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among Iranian patients. It was frequently observed that
the p16 and CDH1 aberrant promoter methylations can
be involved in tumor progression of ESCC, thyroid, oral,
breast, gastric, and prostate cancers. The MGMT pro-
moter hyper methylation was also frequently reported in
CRC, GB, BC, and OSCC. Therefore, p16, CDH1, and
MGMT methylation status can be suggested as a general
methylation based panel marker for all cancers in Iran-
ian patients. Moreover, there were various reports of
PTEN and ER-α promoter hyper methylations in Iranian
BC patients which introduces them as methylation based
markers of BC in this population. Generally, this review
paves the way to introduce a non-invasive methylation
specific panel of diagnostic markers for the early detec-
tion of cancer among Iranian populations.
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