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Etheno adducts: from tRNA modifications
to DNA adducts and back to miscoding
ribonucleotides
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Abstract

Etheno (and ethano) derivatives of nucleic acid bases have an extra 5-membered ring attached. These were first noted
as wyosine bases in tRNAs. Some were fluorescent, and the development of etheno derivatives of adenosine, cytosine,
and guanosine led to the synthesis of fluorescent analogs of ATP, NAD+, and other cofactors for use in biochemical
studies. Early studies with the carcinogen vinyl chloride revealed that these modified bases were being formed in DNA
and RNA and might be responsible for mutations and cancer. The etheno bases are also derived from other
carcinogenic vinyl monomers. Further work showed that endogenous etheno DNA adducts were present in animals
and humans and are derived from lipid peroxidation. The chemical mechanisms of etheno adduct formation involve
reactions with bis-electrophiles generated by cytochrome P450 enzymes or lipid peroxidation, which have been
established in isotopic labeling studies. The mechanisms by which etheno DNA adducts miscode have been studied
with several DNA polymerases, aided by the X-ray crystal structures of these polymerases in mispairing situations and
in extension beyond mispairs. Repair of etheno DNA adduct damage is done primarily by glycosylases and also by the
direct action of dioxygenases. Some human DNA polymerases (η, κ) can insert bases opposite etheno adducts in DNA
and RNA, and the reverse transcriptase activity may be of relevance with the RNA etheno adducts. Further questions
involve the extent that the etheno adducts contribute to human cancer.
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Introduction
Etheno adducts are interesting for a number of reasons.
One of us was first introduced to these in the late 1970s,
and both of us continue to work with these today. The
most important four etheno adducts, at least with regard
to issues of mutagenesis and cancer, are shown in Fig. 1.
Note the numbering systems, which differ from the
purines and pyrimidines. Some additional 5-membered
exocyclic ring compounds of relevance are shown in
Fig. 2.

The history of etheno bases goes back to before either
of us knew about them, to their discovery in tRNA.
These are natural products. The history continues
through organic synthesis and use in bioorganic chemis-
try and then their discovery as DNA adducts derived
from work with chemical carcinogens. Detailed mecha-
nisms of formation are discussed. Another important
discovery was their presence as “endogenous” DNA ad-
ducts. The effects of the etheno adducts on DNA pairing
have been investigated in detail, both in free oligonucle-
otides and within active sites of DNA polymerases. The
etheno DNA adducts are repaired by specific enzymes.
Finally, etheno adducts in RNA can be misread by DNA
polymerases involved in reverse transcriptase activity.
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Y-bases in tRNA
tRNAs have a number of unusual bases, which appear to
be involved in maintaining the stem-loop structures
needed. A fluorescent base was found in yeast tRNA [5–7],
and structures were characterized [8–11]. These structures
(Fig. 3) are derivatives of 1,N2-ε-Guo (Fig. 1). They
have been found in tRNAs from animals, yeast, and
archaebacteria but not eubacteria or in mitochondria
or chloroplasts [12].
The biosynthesis of these etheno derivatives is

complex and, in terms of metabolic strategies, expen-
sive. A pathway for biosynthesis is shown in Fig. 4.
The source of the extra two carbon atoms is pyru-
vate [14], and the catalysts involved are flavoproteins
and radical S-adenosylmethionine (SAM) enzymes.
The residual amino acid side chain (from methio-
nine) is esterified and acetylated to form wybutosine
(Fig. 4). Detailed proposals for formation of the
imidazoline ring are presented in Fig. 5 [14–16].

Etheno derivatives of cofactors
In 1971 Kochetov et al. [17] reported that the reaction
of 2-chloroacetaldehyde with 9-methyladenine and 1-
methylcytosine yielded the N-methyl derivatives of 1,N6-
ε-Ado and 3,N4-ε-Cyd (Fig. 1). Leonard and his

associates used 2-chloroacetaldehyde to prepare 1,N6-ε-
Ado and N3,4-ε-Cyd under mildly acidic conditions [18].
The latter group then used this approach to prepare the
etheno derivatives of 3′-AMP, 5′-AMP, 3′,5′-cyclic
AMP, ADP, and NAD+ [19]. These derivatives were
active as cofactors in a number of enzyme systems and
allowed for the analysis of binding parameters and other
properties (Fig. 6) [20–22].
Unpaired bases in rRNA could also be modified

with 2-chloroacetaldehyde, with up to 16 of the 23
adenines reacting and retention of 80% of the bio-
logical activity [23].

Modification of DNA by products of vinyl chloride
and other olefins generates etheno adducts
Vinyl chloride was found to produce unusual liver tu-
mors in workers who handled this vinyl monomer in the
polymer industry [24], and this cancer could be repro-
duced in rats [25]. Malaveille et al. [26] showed that the
bacterial mutagenicity of vinyl chloride was dependent
upon the addition of a liver microsomal system (contain-
ing cytochrome P450 (P450)) from rats, mice, or humans.
Two of the suspected oxidation products of vinyl chloride,
2-chloroethylene oxide (vinyl chloride epoxide) and its re-
arrangement product 2-chloroacetaldehyde, were directly

Fig. 1 The four major etheno bases. Numbering systems are shown. The modified bases may be in DNA or RNA

Fig. 2 Other etheno derivatives reported in biological systems [1–4]
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mutagenic [26], and both of these compounds reacted
with free Ado to form 1,N6-ε-Ado [27].
Laib and Bolt [28] reported that 1,N6-ε-Ado was

formed in the incubation of vinyl chloride with rat
liver microsomes, poly-Ado, and NADPH, and 1,N6-ε-
dAdo and 3,N4-ε-dCyd were formed in vitro under
similar conditions [29]. 1,N6-ε-dAdo, 1,N6-ε-Ado, 3,
N4-ε-dCyd, and 3,N4-ε-Cyd were identified as DNA and
RNA adducts in livers of rats treated with 14C-vinyl
chloride [29, 30].

Sattsangi et al. [31] had described the reaction of 2-
chloracetaldehyde with guanosine in the synthesis of
1,N2-ε-Guo. The synthesis of N2,3-ε-Guo required
blocking the O6 atom. Kúsmierek and Singer [32]
also reported that 1,N2-ε-dGuo was formed in polynu-
cleotides and DNA treated with 2-chloroacetaldehyde.
Both 2-choroethylene oxide and its rearrangement

product 2-chloroacetaldehyde are capable of reacting
with nucleic acids to generate etheno adducts (Fig. 7,
Table 1) [27]. Gwinner et al. [36] reported that 2,2′-

Fig. 3 Wyosine and related tRNA bases containing etheno structures [12]

Fig. 4 Biosynthetic pathway from guanosine (in rRNA) to wybutosine [13]. Ado-Met: S-adenosylmethionine
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Fig. 5 Proposed mechanisms for imidazoline ring formation in wyosine [14–16]

Fig. 6 1,N6-ε-Ado derivatives of ATP and NAD+ [19–21]
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dichlorodiethyl ether, which is hydroxylated and decom-
poses to 2-chloroacetaldehyde, did not yield etheno
DNA adducts or N7-(2-oxoethyl) dGuo when given to
rats nor did it produce the preneoplastic foci, a hallmark
of vinyl chloride carcinogenesis. The results were con-
gruent with in vitro results on the labeling of DNA by
14C-vinyl halides in microsomal reactions, with the ep-
oxides and 2-haloacetaldehydes being quenched by the
addition of enzymes (epoxide hydrolase and alcohol de-
hydrogenase) (Fig. 7) [33].
Other chemical carcinogens were found to generate

etheno DNA and RNA adducts, as a result of generation
of bis-electrophiles (Fig. 8). Labeled 1,N6-ε-Ado and 3,
N4-ε-Cyd were found in RNA of mice treated with 14C-
ethyl carbamate [39], which is now understood to be oxi-
dized to vinyl carbamate and then to the epoxide [39–41].
Acrylonitrile can be oxidized (by P450 2E1) to 2-

cyanoethylene oxide, which reacts with Ado to form 1,
N6-ε-Ado [42].
At least two nitrosamines can form etheno adducts.

One is the epoxide derived from methyl, vinyl nitrosa-
mine, which reacted with Ado to form 1,N6-ε-Ado [37].
A nucleophilic attack (adenosine) on the epoxide also

generates methyl diazohydroxide, a methylating agent
(which yielded N7-methyl dGuo). Hecht et al. [3] re-
ported that the reaction of α-hydroxy-N-nitroso piperi-
dine with DNA generated a 7-(2-oxopropyl) derivative of
1,N2-ε-dGuo. This product, proposed to be formed from
4-oxo-2-pentenal, has relevance to subsequent work on
lipid peroxidation.
The characterization of human P450 2E1 allowed a

number of cancer suspects to be examined as substrates.
The enzyme was found to catalyze the oxidation of vinyl
chloride, vinyl bromide, acrylonitrile, and vinyl carba-
mate to form 1,N6-ε-Ado (with Ado as a trap), presum-
ably via the epoxides [43]. Ethylene dichloride and
ethylene dibromide also yielded 1,N6-ε-Ado, presumably
via oxidation to the 2-haloacetaldehydes. Subsequent
studies in this [43] and several other laboratories have
identified P450 2E1 as the major catalyst involved in the
oxidation of small chemical carcinogens, especially vinyl
monomers.

Endogenous etheno DNA adducts
In the course of developing sensitive assays for DNA ad-
ducts, the Swenberg laboratory reported that N2,3-ε-

Fig. 7 Oxidation of vinyl chloride to 2-chlorooxirane (vinyl chloride epoxide), rearrangement to 2-chloroacetaldehyde, and reaction with DNA
(and RNA). The enzymes epoxide hydrolase and alcohol dehydrogenase (plus NADH) were used to attenuate each of the products and ascertain
which is the major one involved in binding [33, 34]

Table 1 DNA Adducts Formed in Reaction with 2-Chlorooxirane (Vinyl Chloride Epoxide)

Adducta Yield with 10mM 2-chlorooxirane, pmol (μmol of DNA base)− 1 Method Ref

N7-(2-oxoethyl)Gua 10,000 HPLC/fluorescence [34]

1,N6-ε-dAdo 500 HPLC/fluorescence [34]

HO-ethanoGua 24 HPLC/MS/MS [35]

HO-ethanodGuo 29 HPLC/MS/MS [35]

N2,3-ε-Gua 16 HPLC/fluorescence [1]

3,N4-ε-dCyd 7 HPLC/fluorescence [35]

1,N2-ε-Gua ~1b HPLC/fluorescence [1]

2.5 HPLC/MS/MS [35]
aThe name of the adduct indicates whether the base or deoxyribonucleoside was assayed
bIn other work, a 15 mgmL− 1 concentration of herring sperm DNA was used instead of 5 mg of calf thymus DNA mL− 1 in references [34], and a value of 6.5 pmol
(μmol of DNA base)− 1 was obtained [1]
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dGuo was present in the DNA of livers of untreated rats
[44]. This result was surprising in light of the growing
number of vinyl monomers and related compounds that
had been shown to form etheno adducts. The Bartsch
and Chung laboratories showed that 1,N6-ε-dAdo and 3,
N4-ε-dCyd could be generated during unsaturated lipid
peroxidation [45–47]. The endogenous levels of some of
the etheno DNA adducts are on the order of magnitude
of other modified DNA bases associated with oxidative
damage [44]. Further, levels of damage have been shown
to be greatly increased (2- to 45-fold) by high fat diets
and diseases of chronic inflammation [48].
Mechanisms of formation of etheno adducts are complex

and can involve hydroperoxides, keto enols, and epoxides
(Figs. 9 and 10). The proposed mechanism (Fig. 10) begins
with carbinolamine/Schiff base formation with exocyclic
amines, followed by reaction of a ring amine with the
“second” electrophile (Fig. 10) [4, 49–54]. Some of
the “branched” etheno DNA adducts, a 3-substituted

2-hexanone derivative of 3,N4-ε-dCyd [55] and a 1,
N2-ε-dGuo derivative formed by trans-4-hydroxynone-
nal [56] have been shown to produce mutations in
cells, as well as misinsertions in reactions catalyzed
by individual DNA polymerases [57, 58]. Some of the
etheno adducts derived from lipid peroxidation have
been shown to lead to DNA interstrand crosslinks [59, 60].
A summary of analyses of etheno DNA adducts in un-

treated rats and humans is presented in Table 2. As can
be noted, there is considerable variation, due in part to
different methods of analysis. Most of the levels are a
few adducts per 108 nucleotides. It should be noted that
1,N2-ε-dGuo has not been measured in tissue samples. It
was not detected in the rat liver work of Morinello et al.
[64], even in vinyl chloride-exposed rats, and was con-
sidered unrelated to the tumors. However, the base (1,
N2-ε-Gua) is excised by base excision repair and can be
detected in human urine [71]. Levels of excretion were
~ 2-fold higher in smokers than non-smokers.

Chemical mechanisms of formation of etheno
adducts
Reactions of bis-electrophiles can be complex in that
there are two sites of reaction with nucleophiles (e.g.,
DNA). Moreover, there may be a series of possible elec-
trophiles due to instability of some, e.g. epoxides.
As already mentioned (Fig. 7), early studies with vinyl

chloride and vinyl bromide showed that epoxide hydro-
lase was more effective in attenuating the binding of
radioactivity from either vinyl halide to DNA in
microsomal incubations [33], implicating 2-haloethylene
oxides as the reactive species, instead of 2-
haloacetaldehydes. These results were opposite of those
experiments in which protein binding was measured

Fig. 8 Chemicals known to lead to the formation of etheno adducts.
The vinyl monomers undergo epoxidation to generate bis-
electrophiles [37]. N-Nitrosopiperidine is α-hydroxylated to yield a
product that breaks down to 4-oxo-2-pentenal and reacts to form
propanone-1,N2-ε(d) Guo [3] (Fig. 2). The two ethylene dihalides can
be hydroxylated to the gem-halohydrins, which then release HCl or
HBr to yield 2-haloacetaldehydes [38]

Fig. 9 Generation of etheno adducts from peroxidation of unsaturated fatty acids [4]
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[72] and can be rationalized in the context of hard
(DNA) and soft (thiol) nucleophiles reacting with differ-
ent electrophiles.
The reaction of N6-methylAdo with 2-chlorooxirane

was two orders of magnitude faster than with 2-
chloroacetaldehyde [38]. The yields of 1,N6-ε-dAdo and
N2,3-ε-dGuo were also two orders of magnitude higher
with 2-chlorooxirane than 2-chloroacetaldehyde, and (as
in Fig. 7) epoxide hydrolase was more effective than

alcohol dehydrogenase in attenuating the levels of both
adducts formed in DNA in incubations with vinyl chlor-
ide and rat liver microsomes [1, 34].
Mechanisms for the reaction of 2-haloethylene oxides

with Ado (Fig. 11) and Cyd (Fig. 12) have been eluci-
dated using 13C NMR spectroscopy [38]. The approach
involved the slow generation of 2-bromoethylene oxide
in situ from 2,2-dibromoethanol at pH 9.2. The 13C la-
beling patterns with the 1,N6-ε-Ado and 3,N4-ε-Cyd

Fig. 10 Reaction of dGuo with 4-hydroxynonenal epoxide leading to 1,N2-ε-dGuo and branched derivatives [49, 50]

Table 2 Levels of Measured Endogenous Etheno DNA Adducts (see also [61])

DNA Source Adducts/108 nucleotides Method Reference

1,N6-ε-dAdo 3,N4-ε-dCyd 1,N2-ε-dGuo N2,3-ε-dGuo

Rat Liver 0.10–0.12 0.10–0.12 Immunoaffinity/32P labeling [47]

Liver 18–23 GC/MS [47]

Liver 120 560 HPLC/32P labeling [62]

Liver 0.011–0.012 0.016–0.017 Immunoaffinity/32P labeling [63]

Lung 0.4–0.5 1.8–3.8 Immunoaffinity/32P labeling [63]

Kidney 0.7–0.8 2.1–2.8 Immunoaffinity/32P labeling [63]

Lymphocytes 1.1 1.2 Immunoaffinity/32P labeling [63]

Hepatocytes 1.4 Immunoaffinity/GC/MS [64]

Hepatocytes NDa Immunoaffinity/GC/MS [65]

Human Hepatocytes 2.0 LC/MS [66]

Oral cells 0.77 0.61 LC/MS [67]

Placenta 74–84 LC/MS [68]

Placenta 1.1 LC/MS [69]

Pancreas 1.8 1.2 Immunoaffinity/32P labeling [70]
aND Not detected (< 4)
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showed that the initial reaction is of a ring nitrogen (N1
of Ado or N3 of Cyd) with the unsubstituted methylene
carbon of the 2-haloethylene oxide [38]. Similar studies
were done with Guo (Fig. 13) [1]. As with Ado and Cyd,
the formation of 1,N2-ε-Guo is explained by the reaction
of the (ring) N1 nitrogen on the methylene carbon of
the 2-haloethylene oxide. However, the formation of N2,
3-ε-dGuo is more complex, and we concluded that the
N3 (ring) nitrogen of dGuo reacts first with the halogen-
substituted carbon of the 2-haloethylene oxide, with
subsequent reaction of the (formed) aldehyde with the
exocyclic (N2) nitrogen, followed by dehydration of the
carbinolamine [1].
When 2-bromoacetaldehyde reacted with Guo, the 13C

labeling pattern indicated that the initial reaction was
that of the aldehyde to form a Schiff base, followed by
attachment of the N1 atom to form 1,N2-ε-Guo or the
N3 atom to form N2,3-ε-Guo (Fig. 14) [73]. Kúsmierik
and Singer [74] had reported that the reaction of 2-
chloroacetaldehyde with Ado or Cyd yielded quasi-stable
carbinolamine intermediates (“hydrates”). The reaction
of dGuo with glycidaldehyde to form 1,N2-ε-dGuo also
proceeds via initial Schiff base reaction of the 1-amino
group with the aldehyde [75].
We conclude that 2-haloethylene oxides are much

more reactive than 2-haloacetaldehydes in reacting with
DNA and RNA (Fig. 7). The results have biological rele-
vance in that other chemicals that can generate 2-

haloacetaldehydes after metabolism are not very carcino-
genic [36] (Fig. 7). Treatment of DNA with 2-chlorooxirane
yields a series of products, including 7-hydroxyethano-
dGuo, a stable hemiaminal (Fig. 2). The products were
formed in the order N7-(2-oxoethyl) dGuo > > 1,N6-ε-dAdo
> 7-hydroxyethano dGuo > N2,3-ε-dGuo > 3,N4-ε-dCyd > 1,
N2-ε-dGuo (Table 1) [35].
In the course of studies on the mechanisms of forma-

tion of 1,N2-ε-(d) Guo and N2,3-ε-(d) Guo [1], some
anomalous behavior was noted when isotopic labeling
studies were attempted with deuterium. The H-5 proton
of N2,3-ε-Guo was lost upon heating under mildly acidic
conditions and explained the inability to prepare [5-2H]-
N2,3-ε-Guo from ClC2H2CHO (ClCD2CHO). The H-5
proton of N2,3-ε-Guo and the H-7 proton of 1,N2-ε-Guo
were selectively exchanged at either pH 7.7 or 9.2. Mech-
anisms involving tautomeric exchange have been pro-
posed [1]. Some of these results may explain sensitivity
to acid and base in early studies on the tRNA Y-bases
(vide supra, Fig. 3) [7, 9].

Effect of etheno adducts on oligonucleotide
structures
Some of the early work involved treatment of tRNA with
2-chloroacetaldehyde [23] but the results were rather
non-descript. An interesting finding was the reaction of
chloroacetaldehyde with Z-(left-handed) DNA [76];
adenines (syn conformation) preferentially reacted

Fig. 11 Mechanism of reaction of a 2-halooxirane with Ado to form 1,N6-ε-Ado [38]. * indicates a 13C label

Fig. 12 Mechanism of reaction of a 2-halooxirane with Cyt to form 3,N4-ε-Cyt [38]. * indicates a 13C label
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compared to cytosines (although etheno adducts
were not characterized). In the reaction of 2-
chloroacetaldehyde with model polynucleotides,
hydrogen bonding in double-stranded structures was
important in the formation of 1,N2-ε-Gua [32]. The
formation of N2,3-ε-Gua was relatively independent
of whether the DNA was single- or double-stranded.
In 15-mer oligomeric duplexes, the pairing of 3,N4-ε-

dCyd opposite dGuo, not surprisingly, destabilized the
helix but not as much as a T:G mispair [77].
Apparently only two X-ray crystal structures have been

published with etheno adducts present, and both are
self-complementary. One has 1,N6-ε-dAdo:dGuo pairing

[78] and the other has 3,N4-ε-dCyd:dGuo pairing [79].
As expected, both have lost the normal base pairing.
More NMR studies have been published on pairing of

etheno bases in oligonucleotides [80–89]. The majority
of the NMR studies with 3,N4-ε-dCyd have it paired with
dGuo, with normal H-bonding blocked and a hydrogen
bond involving the O2 atom of 3,N4-ε-dCyd and the N1
atom of dGuo, as in an X-ray structure, and similar to a
T:G wobble pair. Both nucleotides in the 3,N4-ε-dCyd:
dGuo pair were in the anti configuration but in a 3,N4-
ε-dCyd:dThd pair the 3,N4-ε-dCyd lesion was syn and
dThd was anti [80]. The alignment of 1,N6-ε-dAdo with
dThd was nonplanar [85]. In a 1,N6-ε-Ado:dGuo pair

Fig. 13 Mechanism of reaction of 2-chlorooxirane with Guo to form a 7-OH-1,N2-ε-Guo, b 1,N2-ε-Guo, and c N2,3-ε-Guo [1]
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the 1,N6-ε-Ado was syn but dGuo was anti [86], as in
the crystal structure [78].
Several NMR studies of 1,N2-ε-dGuo oligonucleotides

have been published, at varying pH values [87–89]. The
results are indicative of Hoogsteen pairing and a blend
of conformations at neutral pH. A structure with 1,N2-ε-
dGuo opposite a 1-base deletion showed increased du-
plex stability and can be considered as supportive of the
tendency of 1,N2-ε-dGuo to cause − 1 frameshifts [90].
1,N6-ε-Ado and 3,N4-ε-Cyd have been positioned in

ribooligonucleotides and shown to cause destabilization
of complexes with RNA and DNA complements [91].

Interactions of etheno DNA adducts with DNA
polymerases: structural and functional studies
One of the most interesting aspects of studying DNA ad-
ducts is understanding the details of how an individual le-
sion causes miscoding. This has been a long-term goal but
is not an easy one to accomplish, for a number of reasons.
The synthesis of oligonucleotides containing an adduct

at a specific site can be problematic. The general ap-
proach is to prepare the modified base as a nucleoside
and insert it using chemical synthesis. The adduct must
be stable to the conditions of protection and deprotec-
tion. The oligonucleotide containing the adduct must be
stable and also be very pure, especially if introduced into
a cellular system, where the progeny of impurities are
probably not discernible.
The question arises as to what to look at for miscod-

ing. There is attraction to the use of a cellular system, as
first developed by Essigmann and his associates in 1984
[92]. However, there are a number of aspects to con-
sider. Should one use bacterial or mammalian cells? The
presence of DNA repair systems can be problematic, in
terms of attenuating responses (but cells with repair de-
ficient backgrounds may be useful). There is also the

issue, generally ignored, that almost all of the studies in
this area have been “extra-chromosomal,” i.e. the vectors
(plasmids) may not be copied in the same manner as en-
dogenous DNA adducts due to the use of different poly-
merases and accessory factors (for an exception see our
work with 1,N2-ε-dGuo in [93]). Escherichia coli has five
DNA polymerases and humans have at least 19 with
some kind of polymerization activity, so how does one
discern which is involved? One way is to compare
in vitro assay results with different (purified) polymer-
ases, i.e. specificity constants (kcat/Km). At the cellular
level, it is now relatively easy to use CRISPR systems to
make mammalian cell lines deficient in each polymerase
and then compare mutation frequencies.
In order to define details of miscoding at a biochem-

ical level, it is necessary to use individual DNA polymer-
ases. In the early work, the use of viral, bacterial, or
archaebacterial polymerases was popular but might not
have been reflective of eukaryotic systems. Today most
of the attention has been given to the so-called transle-
sion synthesis (TLS) DNA polymerases (pols), especially
the human ones (in the Y-Family, i.e., η, ι, κ, REV1).
There are two major approaches to understanding the
actions of DNA polymerases, functional and structural.
Functional assays are largely focused on enzyme kinet-

ics. Most of the work is with insertion into primers
bound to templates containing an adduct, but some
studies are done with dNTP extension past template-
DNA adduct:primer mispairs. If the DNA adduct is very
blocking, then steady-state kinetics analysis may be ap-
propriate. However, in some cases it is preferable to use
pre-steady-state kinetic analysis, especially if burst kinet-
ics are observed [94].
Defining what the products are may not be trivial, as

emphasized in our study with Sulfolobus solfataricus
Dpo4 and 1,N2-ε-dGuo (Fig. 15) [90] (vide infra). There

Fig. 14 Mechanism of reaction of 2-haloacetaldehydes with Guo to form a 1,N2-ε-Guo and b N2,3-ε-Guo [73]
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are several approaches to defining the products of poly-
merase extension of primer:template complexes, which
can be complex [95]. One is LC-MS sequence analysis
(Fig. 16), which is relatively straightforward and still
remains the method of choice in our own laboratory
[90, 96, 97]. Others are the “REAP” and “CRAB”

methods developed by Essigmann’s laboratory [98].
The last, which has become feasible in recent years, is
total sequencing [99].
The other aspect, structure, involves X-ray crystallog-

raphy, which has proven to be very feasible for TLS
DNA polymerases and DNA adducts. The only realistic

Fig. 15 Incorporation of dNTPs across from 1,N2-ε-dGuo in a primer and extension beyond. The indicated primer template complex was
incubated with the DNA polymerase Dpo4 and each dNTP (A, G, C, T). The primer contained a 5′-32P label, and the products of each reaction was
analyzed by denaturing gel electrophoresis [90]

Fig. 16 Assignment of pathways for insertion and extension for a mixture of dNTPs and Dpo4, as analyzed by LC-MS [90]. The percentages
indicate the fraction of each product formed. X-ray crystal structures of the complexes indicated in boxes were obtained
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bacterial DNA polymerases for crystallography have
been pol I, II, and IV [100–102]. Pol III and pol V, al-
though they can have roles with DNA adducts, are too
complex. The Y-Family TLS polymerase S. solfataricus
Dpo4 has been popular as a model. Many structures of
the core elements of human pol η, ι, and κ with adducts
have now been reported, and in many cases the details
have been quite revealing about mechanisms. Structural
studies with the replicative DNA pols δ and ε (and E.
coli pol III and V) are not very realistic due to the num-
ber of subunits. Although pol β has been a popular
model for studies, this is really a gap-filling DNA poly-
merase and its relevance in studies on primer extension
(or even insertion with a gap opposite a DNA adduct) is
questionable.
The final point to make is that different polymerases

may vary in terms of how they deal with a single DNA ad-
duct. This is exemplified in work with O6-methyl dGuo
[103, 104] and in the case of 1,N2-ε-dGuo (Table 3).
Relatively few studies have been done with 3,N4-ε-

dCyd. E. coli pol I (Klenow fragment) inserted dAMP
and dTMP opposite 3,N4-ε-dCyd [109]. The same

misinsertions were seen with mammalian pol α, β, and δ
[110] and in cellular E. coli and monkey kidney cells
[111]. To our knowledge, no polymerase crystal struc-
tures with 3,N4-ε-dCyd have been reported, only those
with a modified oligonucleotide in the absence of poly-
merase [79].
With regard to 1,N6-ε-dAdo, Singer’s laboratory re-

ported that all four of the dNTPs could be incorporated
opposite this lesion by E. coli pol I and that the results
were influenced by the choice of polymerase and the se-
quence [112, 113]. The bases Ade, Cyt, and Gua were all
reported to be misinserted in various extrachromosomal
cellular misincorporation systems [114–117]. Levine
et al. [117] had reported that human pol η was 100-fold
more active than pol κ in replication past 1,N6-ε-dAdo,
and our laboratory found that replication past 1,N6-ε-
dAdo was dominated by incorporation of purines (dAdo,
dGuo) and by extensive − 1 frameshifts (Fig. 17) [118].
Frameshifts are not generally observed in simple primer-
extension studies but are readily detected by LC-MS
analysis [90, 118]. X-ray crystal structures indicated that
the incoming dATP and dGTP were not paired with 1,

Table 3 N2,3-ε-dGuo vs. 1, N2-ε-dGuo [90, 105–108]

Polymerase Template dNTP kcat/Km (μM− 1 min− 1) f Template dNTP kcat/Km (μM− 1 min− 1) f

E. coli pol I KF (exo¯) 3′-G*TA- N2,3-ε-dG:C 0.23 1 1,N2-ε-dG:C 0.0081 1

N2,3-ε-dG:T 0.24 1 3′-G*TG- 1,N2-ε-dG:G 0.0087 1.1

1,N2-ε-dG:A 0.0016 0.2

S. solfotaricus
Dpo4

3′-G*TA- N2,3-ε-dG:C 0.025 1 3′-G*TA- 1,N2-ε-dG:C 0.00006 1

N2,3-ε-dG:T 0.0054 0.22 1,N2-ε-dG:A 0.0008 14

Human pol κ 3′-G*TA- N2,3-ε-dG:C 0.022 1 3′-G*TA- 1,N2-ε-dG:C 0.0012 1

N2,3-ε-dG:T 0.0081 0.37 1,N2-ε-dG:T 0.0012 1

Human pol ι 3′-G*TA- N2,3-ε-dG:C 0.0017 1 3′-G*TA- 1,N2-ε-dG:C 0.0017 1

N2,3-ε-dG:T 0.0012 0.71 1,N2-ε-dG:T 0.016 9.6

G*: N2,3-ε-dG or 1,N2-ε-dG; f = (kcat/Km)incorrect/(kcat/Km)correct
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N6-ε-dAdo but were in a staggered configuration relative
to 1,N6-ε-dAdo, opposite a 5-dThd in the sequence and
explaining the proclivity for frameshifts [118]. When a
dTTP analog was positioned opposite 1,N6-ε-dAdo, the
adduct was in the syn configuration. In a separate study,
the Agarwal group [119] showed that pol ι used Hoogs-
teen base pairing to promote synthesis beyond 1,N6-ε-
dAdo.
The 1,N2-ε-dGuo adduct completely blocks the normal

Watson-Crick pairing face (Fig. 1) and has been studied
extensively. Early studies with E. coli pol I and II, HIV
reverse transcriptase, and rat pol β showed normal in-
corporation and the insertion of dATP and dGTP [120].
In E. coli, all three mispaired bases were inserted (T, A,
G) [121]. Stable integration of an oligonucleotide in the
chromosome of Chinese hamster ovary cells led to a
number of base pair mutations (due mainly insertions of
A and T opposite 1,N2-ε-Guo), plus substitutions

removed from the site of DNA damage and some unex-
plained rearrangements [93].
A study with 1,N2-ε-dGuo and S. solfataricus Dpo4

yielded some initially confusing results, in that reaction
of a primer:(1,N2-ε-dGuo) template complex led to the
incorporation of three dATPs (Fig. 15), which seemed
highly unusual in light of the sequence context, even if
dATP were incorporated opposite 1,N2-ε-dAdo. LC-MS
approaches were developed to analyze the product,
which proved to be a mixture of four major products.
The content of each could be approximated by LC-MS
(Fig. 16). A scheme could be drawn to explain the − 1
and − 2 frameshifts, plus the other products (Fig. 16). X-
ray structures (Fig. 18) of all oligonucleotide pairing pos-
sibilities shown in boxes (Fig. 16) could be solved [90]. A
major structure is a “Type II” complex in which the
polymerase skips the adduct and pairs with the next base
[90]. Extension of the work to human DNA polymerases

Fig. 17 Staggered arrangements of incoming purine nucleoside triphosphates and 1,N6-ε-dAdo in two pol η insertion stage complexes [118]. a
active site conformation in the complex with dAMPNPP opposite 1,N6-ε-dAdo, viewed into the DNA major groove; b rotated by 90° and viewed
perpendicular to the adenine plane. c Active site conformation in the complex with dGMPNPP opposite 1,N6-ε-dAdo, viewed into the DNA major
groove, and d rotated by 90° and viewed perpendicular to the guanine plane. Selected active site residues are colored by atom with carbon
atoms shown in maroon (1,N6-ε-dAdo), orange (incoming nucleotide), purple (Arg-61 and Gln-38 from the finger domain), or magenta (Asp/Glu
coordinating to Mg2+; cyan spheres)
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[105] showed that pol δ was completely blocked by the
presence of 1,N2-ε-dGuo and that pol η was the most
active in copying past 1,N2-ε-dGuo. pol η preferred to
insert dGTP > dATP > dCTP. Apparently the 1,N2-ε-
dGuo:dGuo base pairs are extended but others not so
well. More recently, X-ray crystal structures have been
obtained with C and A placed opposite 1,N2-ε-dGuo in
human pol η [106]. Mass spectral analysis of fully-
extended products revealed the misinertion of G (85%)
opposite 1,N2-ε-dGuo lesion. Importantly, the post-
lesion extension from the correct nucleotide pair (1,N2-
ε-dGuo:dCyd) was not observed, indicating that the
“correct” pair was retarded regarding extension past the
lesion by pol η [106].
Both 6- and 7-hydroxy derivatives of 1,N2-ethano-

dGuo (Fig. 2) are relevant biologically (Fig. 10) and have
been examined for miscoding with some individual
DNA polymerases [2, 120] and, in the case of 7-hydroxy
derivative in E. coli cells [121]. The results are similar to
those obtained with 1,N2-ε-dGuo, with some differences.
The miscoding potentials of two substituted 1,N2-ε-

dGuo adducts derived from lipid peroxidation have also
been examined. Moriya’s group studied 3-(2-hepta-
none)-3,N4-ε-dCyd and showed incorporation of dTTP
and dATP in mouse fibroblasts [55]. The insertion of
dTTP could be catalyzed by pol η, κ, or ι but insertion
of dATP was attributed to a different, unknown

polymerase, which could not extend beyond the inser-
tion. Extension beyond the mispair was attributed to a
pol ξ-Rev1 complex [55]. In a study with S. solfataricus
Dpo4, the Rizzo laboratory found miscoding behavior of
7-(2-oxoheptyl)-1,N2-ε-dGuo similar, but not identical,
to 1,N2-ε-dGuo [57].
Although N2,3-ε-dGuo is more abundant in DNA than

1,N2-ε-dGuo (Table 1), it has been studied less. One of
the major reasons is the technical difficulties in placing
this lesion in an oligonucleotide because the glycosidic
bond is unstable to hydrolysis [122]. Singer et al. [123,
124] were able to incorporate the nucleoside triphos-
phate into an oligonucleotide template and show misin-
corporation opposite the lesion with HIV-1 reverse
transcriptase. Insertion of 1,N2-ε-dGTP opposite tem-
plate T was also analyzed [124].
In order to circumvent the issue of the glycosidic in-

stability of N2,3-ε-dGuo, we used an isostere approach
previously applied to N7-methylguanine [125]. Deoxyri-
bose was replaced with 2′-fluoroarabinose, i.e. the
addition of fluorine at the 2′ carbon of the sugar ring
adds electronegativity and destabilizes the transition
state for glycosidic cleavage. The half-life of the adduct
at 37 °C was increased to 23 days and allowed detailed
structural and biochemical studies to be done with both
S. solfataricus Dpo4 and other enzymes, including hu-
man pol ι [107, 108]. The overall differences in the

Fig. 18 Close views of active site regions of Dpo4 crystal structures [90]. a Dpo4•DNA•Ca2+ (X = 1,N2-ε-dGuo and Z = T). b Dpo4•DNA•dATP•Ca2+

(X = 1,N2-ε-dGuo and Z = T). c Dpo4–3. Dpo4•DNA•ddATP•low Mg2+ (X = 1,N2-ε-dGuo and Z = T). d Dpo4–4. Dpo4•DNA•Ca2+ (Z = C). The color
codes for protein and DNA are: dATP and ddATP are drawn in pink, ddGTP in green, and divalent metal ions are shown as red spheres
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behavior of 1,N2-ε-dGuo and N2,3-ε-dGuo are shown in
Table 3. For N2,3-ε-dGuo the fidelity (with Dpo4) is con-
siderably higher and there are few frameshifts. With
Dpo4, the crystal structure of the 1,N2-ε-dGuo:dCTP
pair is pseudo-Watson Crick and the 1,N2-ε-dGuo:dTTP
pairing is “wobble-like” (Fig. 18) [107]. With pol ι, there
was Hoogsteen-like pairing, with two hydrogen bonds in
the N2,3-ε-dGuo:dCTP pair and only one in the N2,3-ε-
dGuo:dTTP pair (Fig. 19) [108]. dTTP insertion was the
major misincorporation event with all of the human Y-
Family TLS polymerases examined, with pol ι having the
highest frequency [108].
The dTTP pairing with N2,3-ε-dGuo is also consistent

with a dominant G to A transition pattern seen with N2,
3-ε-dGuo in E. coli [99]. Collectively, the work is rele-
vant in that G to A transitions were the dominant muta-
tions observed in vinyl chloride-associated liver tumors
[126]. Perhaps the mystery of vinyl chloride and cancer
etiology has finally been revealed.

Repair of etheno DNA adducts
The repair of etheno adducts has long been studied, go-
ing back > 30 years. Swenberg et al. [127] reported that
1,N6-ε-dAdo, 3,N4-ε-dCyd, and N2,3-ε-dGuo were all
persistent in rat liver. Moreover, the ratios of the ad-
ducts (Table 2) differ from what is observed upon

reaction of 2-chloroethylene oxide with DNA (Table 1),
suggesting different half-lives of individual adducts.
Oesch et al. [128] reported the release of 1,N6-ε-dAdo

and N2,3-ε-dGuo from chloroacetaldehyde-treated DNA
by an extract of rat brain cells. Rydberg et al. [129, 130]
reported glycosylase activity towards 1,N6-ε-dAdo in hu-
man cell-free extracts, and Singer et al. [131] reported
that human N3-methyl Ade-DNA glycosylase could act
on 1,N6-ε-dAdo. Although Singer’s group reported that
a single human DNA glycosylase could release 1,N6-ε-
dAdo, 3,N4-ε-dCyd, 1,N2-ε-dGuo, and N2,3-ε-dGuo
[132], they subsequently reported that 1,N6-ε-dAdo and
3,N4-ε-dCyd were excised by separate (human) glycosy-
lases [133]. Later, Saparvaev et al. [134] reported that E.
coli mismatch-specific uracil-DNA glycosylase and hu-
man alkylpurine-DNA-N-glycosylase can excise 1,N2-ε-
dGuo. Ethano Cyt and Ade adducts (saturated) are also
substrates for E. coli glycosylases [135].
Repair of DNA etheno adducts is not restricted to gly-

cosylases, in that they are also subject to direct reversal
and nucleotide excision repair (NER) (Fig. 20). Evidence
has also been reported that NER can be involved in
DNA repair, at least for 1,N6-ε-dAdo and 3,N4-ε-dCyd
(Fig. 20) [136, 137].
AlkB is an α-ketoglutarate-dependent dioxygenase that

was discovered in bacteria for its ability to catalyze

Fig. 19 Crystal structures of Dpo4•N2,3-ε-dGuo-DNA complex (Z = C in the template) [107]. a Ternary complex of dCTP•N2,3-ε-dGuo and b the
orientation of the bases with proposed hydrogen bonding mechanism. c Binary complex of ddT•N2,3-ε-dGuo and d the orientation of the bases
with proposed hydrogen bonding mechanism

Guengerich and Ghodke Genes and Environment           (2021) 43:24 Page 15 of 23



hydroxylation and removal of alkyl groups at the ring ni-
trogens of DNA bases. The Essigmann laboratory
showed that the enzyme, and its mammalian ortholo-
gues, can catalyze the direct removal of the two carbons
of etheno bases (1,N6-ε-dAdo; 3,N4-ε-dCyd) as glyoxal
(Fig. 21). Tudek and associates compared the removal of
1,N6-ε-dAdo, 3,N4-ε-dCyd, and 1,N2-ε-dGuo by nine
bacterial AlkB and two human AlkB homologues [139].
Two bacterial AlkB-type enzymes had no activity. Three
removed all three of the etheno adducts, and two of
these did not act on any alkyl DNA adducts. Another
three removed 1,N6-ε-dAdo and 3,N4-ε-Cyd but not 1,
N2-ε-dGuo. The human AlkB orthologues varied in their
activities [139].
An interesting reaction occurs with 1,N2-ε-Gua and 7-

(2-heptanone)-1,N2-ε-Gua, in which the 2-carbon is oxy-
genated by xanthine oxidoreductase (Fig. 22) [140]. No
oxidation of 1,N6-ε-Ade or 3,N4-ε-Cyt was detected.

Copying of 1,N6-ε-ado in DNA as well as in RNA
The incorporation of ribonucleotides during DNA repli-
cation represents a threat to the genome and its stability
[141–143]. In particular, a ribo backbone may increase

the risk of spontaneous hydrolysis that can lead to DNA
strand breaks [144, 145], although this conclusion is
controversial [146]. Embedded ribonucleotides have also
been linked with systemic autoimmunity and chromo-
somal instability [147]. The main reasons for rNTP in-
sertions are the higher cellular concentrations of rNTPs
(over dNTPs), lack of complete sugar discrimination,
and persistence of a ribo-backbone in DNA due to the
incomplete removal RNA stretches from Okazaki frag-
ments [148–151]. The human RNase H2-mediated ribo-
nucleotide excision repair (RER) pathway helps in
stabilizing genomic integrity by removing embedded ri-
bonucleotides from DNA [152–154].
However, some ribonucleotides in DNA may persist

[155], and these embedded ribonucleotides are consid-
ered a type of DNA damage. It is very important to
understand the fate of ribonucleotides that escape repair.
The TLS DNA damage tolerance pathway can have an
important role in this context. Pol η can bypass the em-
bedded ribonucleotides in DNA, and our own studies
have shown novel functions of pol η [156–159]. How-
ever, little is known about pol η-mediated TLS across
from a ribonucleotide in the DNA, and it is important to

Fig. 20 Mechanisms of repair of etheno DNA adducts. AlkB is a direct pathway catalyzed the bacterial dioxygenase AlkB and mammalian
homologues. BER: base excision repair. NER: nucleotide excision repair

Fig. 21 Direct repair of 1,N6-ε-dAdo by AlkB [138]. Putative intermediates are in brackets
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know the role of pol η in the context of ribonucleotides,
either in the form of an RNA template or as ribonucleo-
tides in DNA.
Our studies revealed interesting details about ribonu-

cleotide tolerance, reverse transcription, and RNA pri-
mer extension events for the most abundant nucleotide,
Ado, and its modified analog 1,N6-ε-Ado [159]. In pol η-
mediated bypass studies using physiological concentra-
tions of dNTPs, as well as rNTPs (Fig. 23), a DNA pri-
mer was fully extended using dNTPs when hybridized
with an Ado-containing DNA template (DNA-Ado,
Fig. 23A, lanes 1–4), but less processive extension was
observed for rNTPs (Fig. 23A, lanes 5–8). pol η-
mediated TLS was slower opposite 1,N6-ε-Ado as com-
pared to Ado in a DNA template. The bypass of 1,N6-ε-
Ado was inefficient using dNTPs (Fig. 23B, lanes 1–4),
and with rNTPs the reactions were completely retarded
(Fig. 23B, lanes 5–8). The TLS process was attenuated in
the presence of 1,N6-ε-Ado (Fig. 23A, B, compare lane

1), and hpol η performed error-prone bypass of 1,N6-ε-
Ado. Single nucleotide insertion and steady-state kinetic
studies indicated that pol η preferably inserted dATP
and dGTP opposite a 1,N6-ε-Ado-modified DNA tem-
plate (compared to dTTP and dCTP). No rNTP incorp-
oration was observed opposite 1,N6-ε-Ado in DNA,
indicating that pol η follows a purine rule due to prefer-
ence for adding deoxyribopurines (over ribo-purines)
opposite 1,N6-ε-Ado. In steady-state kinetic analyses,
dTTP insertion opposite 1,N6-ε-Ado was very unfavor-
able compared to other dNTPs [159].
Mass spectral analysis of pol η-mediated TLS products

of the DNA/DNA-1,N6-ε-Ado complex revealed frame-
shifts (one deletion) opposite the lesion, using physio-
logical concentrations of dNTPs. Thus, 1,N6-ε-Ado can
exist in a staggered configuration and the polymerase may
skip the lesion, and pairing of an incoming nucleotide
with the next neighboring base on the template can be fa-
vored [118]. In addition to frameshifts, products with the

Fig. 22 Oxidation of 1,N2-ε-Gua and heptanone-1,N2-ε-Gua by xanthine oxidoreductase (XOR) [140]

Fig. 23 Reactions catalyzed by hpol η with 1,N6-ε-Ado. a, b full-length extension of DNA primer opposite Ado- (a) and ε-Ado- (b) containing
templates using physiological concentrations of mixtures of dNTPs and rNTPs; c, d full-length extension of DNA primer opposite Ado- and ε-Ado-
containing RNA templates, respectively. P indicates the 5′-FAM labeled primer, and the products of each reaction were analyzed by denaturing
gel electrophoresis. Each set of lanes indicates analysis done at varying times (0, 5, 30, and 60min). The figure is adapted from reference [159]
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insertion of A and G opposite 1,N6-ε-Ado lesion were also
observed [159]. In addition, mis-insertion of G in the ex-
tension step was also observed [159]. Overall, steady-state
kinetic and mass spectral analyses both showed the inser-
tion of A and G opposite 1,N6-ε-Ado while mass spectral
analysis revealed frameshift products opposite the lesion.
pol η-mediated reverse transcription activities were

also analyzed using Ado- and 1,N6-ε-Ado-containing
RNA templates (Fig. 23C-D), utilizing physiological con-
centrations of dNTPs as well as rNTPs. Across from the
lesion, the DNA primer was extended with low proces-
sivity using a mixture of dNTPs (Fig. 23D, lanes 1–4),
but extension reactions were strongly retarded with
rNTPs (Fig. 23D, lanes 5–8). Thus, pol η acted as a
reverse transcriptase and added only dNTPs (instead of
rNTPs) opposite 1,N6-ε-Ado. The single nucleotide in-
sertion assays showed that, for a 1,N6-ε-Ado-modified
template, pol η preferably added dATP and dGTP, a
similar base selectivity as observed in the TLS process.
Steady-state kinetic analysis indicated that the incorpor-
ation of dTTP across 1,N6-ε-Ado was quite unfavorable,
as observed in the TLS process. Overall, pol η catalyzed
faithful reverse transcription opposite a 1,N6-ε-Ado-con-
taining RNA template because of the preference for
dNTPs over rNTPs [159].

RNA primer extension opposite the 1,N6-ε-Ado-con-
taining DNA template showed that pol η-mediated RNA
primer extension was severely disturbed as compared
with an Ado-containing DNA template (using dNTPs).
Overall, pol η follows a purine rule, with preference for
dGTP insertion opposite 1,N6-ε-Ado imbedded in DNA.
No rNTP incorporation was observed opposite 1,N6-ε-
Ado with an RNA primer [159].

Human RNase H2-mediated incision of 1,N6-ε-ado
in DNA
The endoribonuclease activity of human RNase H2 op-
posite dAdo, Ado, and 1,N6-ε-Ado in the DNA template
was examined (with the complementary base T). Incision
assays showed that RNase H2-mediated recognition and
incision of Ado in DNA-Ado template was very efficient
(Fig. 24, lanes 7–12), but the endoribonuclease activity
was significantly reduced when a DNA duplex was used
containing a 1,N6-ε-Ado modification (Fig. 24, lanes 13–
18). These results indicate that RNase H2 is able to
recognize the damaged ribonucleotide 1,N6-ε-Ado but
exhibits only partial incision activity. Importantly, the
human RNase H2-mediated recognition and repair of
Ado and 1,N6-ε-Ado was entirely different, apparently
due to the presence of the etheno group on the

Fig. 24 Repair of 1,N6-ε-Ado-containing DNA by RNase H2. Incision assays for DNA-X/DNA-dT employing human RNase H2. S denotes the 5′-FAM
labeled substrate, and P denotes the incised product. The products of each reaction were analyzed by denaturing gel electrophoresis. Each set of
lanes indicates analysis done at varying times (0, 5, 15, 30, 45, and 60min). The figure is adapted from reference [159]
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adenosine. If this adduct persists in the DNA and TLS is
the only way of coping with 1,N6-ε-Ado, then the versa-
tile human TLS pol η may tolerate this adduct but in an
error prone way. In addition, the possibility of a base ex-
cision repair pathway in removing this adduct from
DNA cannot be excluded.

Conclusions
The etheno story is one in which chemical and biological
curiosity came to have considerable relevance in bio-
medical applications. The story began with determin-
ation of the structures of some unusual tRNA entities,
the Y-bases. The chemistry led to some useful fluores-
cent reagents and served as a basis for synthesis and
understanding the mechanism of how these bases are
formed following exposure to both exogenous and
endogenous sources of bis-electrophiles, e.g. vinyl mono-
mers. Relevance to the highly unusual cancers (heman-
giosarcomas) related to industrial exposure to vinyl
chloride was a key event, and today the most docu-
mented basis for the tumors may be the N2,3-dGuo:
dTTP pairing (G to A transitions) [99, 126]. Consider-
able insight has been gained in the formation and repair
of DNA etheno adducts. The discovery of the etheno ad-
ducts in DNA and RNA of experimental animals and
humans never exposed to vinyl monomers and other
prospective bis-electrophiles in the environment led to
the discovery of the role of lipid peroxidation, and the
adducts may be related to the association of cancer with
different diets and lifestyles. Finally, the story has come
full circle, in a sense, with the discovery that RNA
etheno adducts can be copied and lead to mistakes in
DNA [159].
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