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Abstract

Neurodegenerative diseases are becoming major socio-economic burdens. However, most of them still have no
effective treatment. Growing evidence indicates excess exposure to pesticides are involved in the development of
various forms of neurodegenerative and neurological diseases through trigger epigenetic changes and inducing
disruption of the epigenome. This review summaries studies on epigenetics alterations in nervous systems in
relation to different kinds of pesticides, highlighting potential mechanism in the etiology, precision prevention and
target therapy of various neurodegenerative diseases. In addition, the current gaps in research and future areas for
study were also discussed.
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Introduction
With aging of the population in worldwide, neurodegen-
erative diseases, especially Alzheimer’s disease (AD) and
Parkinson’s disease (PD) are becoming major socio-
economic burdens. Their increasing prevalence and
without effective treatment mean these diseases will be a
challenge for future generations [1]. Although several
cellular mechanisms and genes have been proved impli-
cated in the onset and progression of the disease, the
precise molecular underpinnings of these diseases re-
main unclear [2].
Epigenetics is generally defined as a heritable change

in gene function, which can influence gene expression
and subsequent protein expression levels without alter-
ing DNA sequence [3]. The epigenetic molecular factors
include DNA methylation [4], histone modifications [5],
non-coding RNA [6], chromatin structure [7], and RNA
methylation [8]. Epigenetic dysregulation may induce

the development of neurological disorders like Parkin-
son’s disease, Huntington’s disease, and mood disorders
(including depression and anxiety) [9]. Growing evidence
indicates that environmental neurotoxicants are involved
in the development of various forms of neurodegenera-
tive and neurological diseases through trigger epigenetic
changes and inducing disruption of the epigenome [10–
13]. Some sources of environmental pollutants were re-
lated to neurotoxic manifestations, such as metals, pesti-
cides, solvent and some other environmental pollutions
[14–16]. Chemicals could regulate gene expression by
influencing gene transcription, mRNA degradation and
translation, etc. Abnormal changes in DNA or RNA
methylation, non-coding RNA, histone modification can
serve as biomarkers for environmental pollutant-induced
neurotoxicity [17–21]. Consequently, insight into the
epigenetic mechanisms by which environmental contam-
inants causes neurotoxicity is key to modelling targeted
preventions and treatments [22].
Pesticides, including insecticides, herbicides and fungi-

cides, are widely used in agriculture for preventing,
destroying, repelling or mitigating harmful or unwanted
insects, weeds and fungi. However, most pesticides are
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not highly selective and generally toxic to many nontar-
get species, including humans [23]. Particularly, insecti-
cides, which kill insects by disrupting their nervous
system, exert neurotoxic effects in humans as well.
Neurotoxicity can be induced upon high acute exposure,
or by chronic exposure at low doses. Multiple studies
have proved chronic exposure to pesticides at a low dose
is a risk factor for the development of neurodegenerative
diseases, including Alzheimer’s disease, Parkinson’s dis-
ease, amyotrophic lateral sclerosis (ALS), and attention
deficit hyperactivity disorder (ADHD) etc. [24–30].
However, nowadays there are still about 25 million
workers experience unintentional pesticide poisoning
each year, due to inhalation or skin absorption [31].
Therefore, it is very important to study the pathogenic
mechanism and preventive measures of neurodegenera-
tive and neurological diseases induced by pesticides. For
the past few years, many researchers have concerned the
potential role of epigenetic mechanism in pesticide in-
duced neurotoxicity (as shown in Fig. 1).
Here we review details studies on epigenetics alter-

ations in nervous systems in relation to pesticides,
highlighting potential mechanism in the etiology of vari-
ous neurodegenerative diseases (summarized Table 1).
We also highlight current gaps and future areas for the
studies upon epigenetic neurotoxicity induced by
pesticides.

Mechanism of epigenetics
DNA methylation
DNA methylation is an epigenetic mechanism involving
the transfer of a methyl group onto the C5 position of
the cytosine to form 5-methylcytosine [56]. Methyl
groups to cytosine are added by the DNA

methyltransferase (DNMT) enzyme family, namely
DNMT3A, DNMT3B, and DNMT1 [57–59]. DNA
methylation is the most well studied epigenetic regula-
tors in relation to environmental exposures, which can
result in altered global and gene-specific DNA methyla-
tion [60]. In the nervous system, neuronal activity can
also modulate DNA methylation in response to physio-
logical and environmental stimuli [61, 62].

RNA methylation
In addition to genomic DNA modifications, various
modifications of nucleosides which form the basis for
RNA (including tRNA, rRNA, mRNA etc.) were also ap-
preciated [63–65]. N6-methyladenosine (m6A) in mRNA
has been the best-characterized mRNA modification so
far, with roles in modulating mRNA transcript process-
ing and regulation [66, 67]. The m6A effectors include
“writers”, “erasers” and “readers” that respectively install,
remove and interpret the methylation [68]. The ‘writer’
methyltransferase enzymes (including METTL3,
METTL14, WTAP, and KIAA1429) add a methyl group
to the N6 position of adenosine in RNA, and removed
by the “erasers” demethylases (including FTO and
ALKBH5). The methyl group can be recognized by
“reader” proteins (HNRNPC, HNRNPA2B1, YTHDF2,
YTHDF1, and eIF3), and influence almost all steps of
RNA metabolism, including mRNA translation, degrad-
ation, splicing, export and folding, consequently altering
target gene expression, influencing the corresponding
cell processes and physiological function [69, 70].

Histone modification
Histones (H3, H4, H2A, H2B and H1) are the most
abundant proteins in the eukaryotic nuclear DNA

Fig. 1 Schematic representation of the mechanism of epigenetic alterations and neurodegenerative disorders due to exposure to different kind
of pesticides
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Table 1 Summary of epigenetic changes induced by pesticisdes

Pesticides Model Exposure
route

Exposure
dose

Exposure
length

Neurological damage Epigenetic change Ref.

Insecticides

Chlorpyrifos Long Evans
rats

Subcutaneous
injection

3 or 10
mg/kg

21 days Associated with problems in
cognitive function.

MiR-132 and miR-212 in the
CPF-exposed rat hippocam-
pus were up-regulated.

[32]

SH-SY5Y cells Cell culture 0, 25, 50,
100, and
200 μM

24 h Cell viability was decreased.
Pyroptosis related proteins,
ROS levels, as well as level of
caspase-1 and the TUNEL posi-
tive cells were all significantly
up-regulated.

Expression of miR-181 was
enhanced.

[33]

Chlorpyrifos-
oxon

Zebrafish Embryonic
exposure

0.01 and
50 μg/L

4–120 h post
fertilization

Even low dose exposures can
have transgenerational effects
in neurological activity.

Induce alterations in global
DNA methylation.

[34]

Dieldrin C57BL/6 mice Oral intake 0.3 mg/
kg/3 days

30 days Induce impairment of
dopaminergic neuron
development and
maintenance.

Dieldrin-induced differential
methylation was sex-specific.

[35]

C57BL/6 J
mice

Intraperitoneal
injection

5.0 mg/kg
every
other day

30 days Induce apoptotic cell death in
dopaminergic neuronal Cells.

Induce a time-dependent in-
crease in the acetylation of
core histones H3 and H4.

[36]

Permethrin Wistar rats Oral intake 34.05 mg/
kg

From PND6
to PND21

Early life permethrin exposure
in rats, at a dose close to No
Observed Adverse Effect Level
(NOAEL) during neonatal brain
development leads to its
accumulation long after
exposure.

DNMT1, DNMT3a were
increased. The aggregation
of DNMT3b and α-synuclein
was enhanced.

[37].

Wistar rats Oral intake 34.05 mg/
kg

From PND6
to PND21

Low dosage exposure to
permethrin during neonatal
brain development leads to
dopamine decrease in rat
striatum nucleus, oxidative
stress and behavioural
changes linked to the
development of Parkinson’s
like neurodegeneration later in
life.

Global 5mC and 5hmC
levels were increased.
Methylation levels at
H3K9me3 position at both
Th and Nurr1 promoter
regions were reduced.

[38]

Wistar rats Oral intake 34.05 mg/
kg

From PND6
to PND21

An intergenerational
permethrin-induced damage
on progenies has been
identified.

Global genome-wide DNA
methylation was decreased
in mothers exposed in early
life to permethrin as well as
in their offspring.

[39]

Wistar rats Oral intake 34.05 mg/
kg

From PND6
to PND21

Parental exposure leads to a
significant reduction in
dopamine level in the
offspring (F1) born from
parents or just mothers early-
life treated.

Early-life exposure to the
stressor is associated with
changes in global DNA
methylation and
hydroxymethylation in adult
age.

[40]

Paraquat N27
dopaminergic
cells

Cell culture 400 mM 12, 24 or 36
h.

Cell culture models of
Parkinson’s disease.

Histone H3 acetylation was
induced in a time
dependent manner.

[41]

hNPCs Cell culture 0, 5, 10,
20, 40, or
80 μM

24 h Induce developmental
neurotoxicity.

Induced differentially
miRNAs expression.

[42]

hNPCs Cell culture 10 and
100 μM

24 h Lead to the alteration of
several neurodevelopment
related key biological
processes and crucial
pathways.

Alter mRNAs and miRNAs
expression.

[43]

hNPCs Cell culture 0, 25, 50 24 h PQ dramatically suppressed Direct binding effect [44]
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Table 1 Summary of epigenetic changes induced by pesticisdes (Continued)

Pesticides Model Exposure
route

Exposure
dose

Exposure
length

Neurological damage Epigenetic change Ref.

and
100 μM

neural cell differentiation
ability.

between CTNNB1 and miR-
200a existed following PQ
exposure.

Neuro-2a cells Cell culture 100 μM 48 h CaM and p21 were involved in
PQ-induced toxicity.

Nrf2-regulated miR-380-3p
inhibited cell proliferation
and enhanced the PQ-
induced toxicity in N2a cells
potentially by blocking the
translation Sp3 mRNA.

[45]

SH-SY5Y cells Cell culture 50 μM 24 h Impairs Nrf2/ARE defense
network.

Cause miR153 to bind to
and target Nrf2 3′ UTR
thereby weakening the
cellular antioxidant Defense.

[46]

Neuro-2a cells Cell culture 300 48 h Cell culture models of
Parkinson’s disease.

The expression of miR-17-5p
was downregulated, DNA
methylation level was up-
regulated after PQ exposure.

[17]

Neuro-2a cells Cell culture 300 48 h Induce Parkinson’s disease
pathology.

The miR-17-5p was
expressed at lower levels in
PQ-treated Neuron-2a cells,
overexpression of miR17-5p
in Neuro-2a cells could en-
hance cell proliferation, sup-
presse apoptosis and
promote S phase transition
of the cell cycle after PQ
treatment.

[47]

ICR mice Intraperitoneal
injection

5, 10 mg/
kg/2 days

10 times Animal models of Parkinson’s
disease.

PQ caused lncRNA
expression profiling
alteration in the substantia
nigra (SN) through an
interaction with Nrf2, thus
changing the NR_027648/
Zc3h14/Cybb and NR_
030777/Zfp326/Cpne5
mRNA pathways.

[48]

ICR mice Intraperitoneal
injection

5 mg/kg/
3 days, 10
mg/kg/2
days,

10 times Inhibited microglia and
dopaminergic cells
proliferation and microglia
migration.

PQ-induced low expression
of AK039862 rescued
microglia proliferation and
migration inhibition via the
AK039862/Pafah1b1/Foxa1
pathway, AK039862 also
participated in the
interaction between
microglia and dopaminergic
cells with PQ treatment.

[49]

BV2 cells and
MN9d cells

Co-culture 0, 50, 100,
150 μM

36 h

Neuro-2a cells Cell culture 100,
300 μM

24, 36 h Induce neurotoxicity LncRNA NR_030777 has a
vital protective role by
regulating the expression of
Zfp326 and Cpne 5 in
neurotoxicity induced by
PQ.

[50]

MN9D cells

Primary
cortical
neuron

Neuro-2a cells Cell culture 200 μM 3 h Induce oxidative stress m6A participated in a
specific regulatory network
of circRNAs to modulate the
expression of downstream
genes in response to PQ-
induced oxidative stress

[51]

Avermectin Pigeons Oral intake 20, 40, 60
mg/kg

30, 60, 90
days

AVM exhibits significant
cytotoxicity in pigeon brain
nerve cells.

Global DNA
hypomethylation and down-
regulation of DNMT mRNA
expression occurred in a

[52]
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structure [71]. Most of the amino acids reside on the N-
terminal tails of the histone proteins are subjected to
modifications, including acetylation, methylation and
ubiquitination on lysine, methylation and citrullination
on arginine, etc. [72]. Histone modification can influence
all DNA-based processes, including chromatin compac-
tion, nucleosome dynamics, and transcription [73].
Moreover, histone core modifications can also directly
regulate transcription, and influence processes of DNA
repair, replication, stemness, and changes in cell state
[74]. In general, active enhancers are related to the en-
richments of both monomethylated H3K4 (H3K4me1)
and H3K27ac. Gene bodies of actively transcribed genes
are associated with trimethylated H3K36 (H3K36me3),
and transcription start sites of actively transcribed genes
can be identified by trimethylated H3K4 (H3K4me3) and
acetylated H3K27 (H3K27ac) [72].

Non-coding RNAs
Non-coding RNAs (ncRNA) are a relatively recently de-
scribed but significant subpopulation of the transcrip-
tome [75]. According to their size, non-coding RNAs
can be classified to short RNAs which are < 200 nucleo-
tides (nts) in length and long non-coding RNAs
(lncRNAs) are longer than 200 nts. Short non-coding
RNAs include PIWI-interacting RNAs (piRNAs), micro-
RNAs (miRNAs), small interfering RNAs (siRNAs),

circular RNA (circRNA) and small nuclear RNAs
(snRNAs). In the last decade, gene expression has been
proved to be largely regulated by ncRNAs. A growing
number of studies have investigated the involvement of
ncRNAs in various physiological processes [75]. More-
over, miRNAs, lncRNAs and circRNAs have been proved
to be involved in transcriptional regulation at different
level. Therefore, ncRNA is a burgeoning area for all the
biology fields, including neurotoxicology [76].

Pesticide induced epigenetic neurotoxic effect
Insecticides
Organophosphate pesticide
Organophosphate pesticide has been known as the most
widely used pesticides during the past half century.
Number of literatures regard their association with neu-
rodegenerative and neurodevelopmental disorders with
respect to epigenetic mechanisms [77, 78].
Chlorpyrifos (CPF) is one of the most widely used or-

ganophosphorus pesticide (OP) in the world. However,
CPE and its active metabolite chlorpyrifos-oxon (CPO)
have been proved involving in several neurodevelopmen-
tal disorders. Lee’s work identifies the potential epigen-
etic mechanism of hlorpyrifos neurotoxicity, founding
that miR132/212 was elevated in the CA1 hippocampal
region, disrupting the neurotrophin mediated cognitive
processes after CPF administration [32]. Zhao’s team

Table 1 Summary of epigenetic changes induced by pesticisdes (Continued)

Pesticides Model Exposure
route

Exposure
dose

Exposure
length

Neurological damage Epigenetic change Ref.

dose-time-dependent man-
ner in pigeon brains.

Fipronil Zebrafish Embryonic
exposure

40 μg/L From 6 to 96
h post
fertilization

R-fipronil exhibited more
intense neurotoxicity
compared with S-fipronil.

The fipronil-conducted
enantioselective neurotox-
icity likely applied its enan-
tioselectivity by the
dysregulation of DNA
methylation.

[53]

Atrazine (ATR) Carp Embryonic
exposure

4.28, 42.8
and
428 μg/L

40 days Not mentioned. The MBD2 mRNA expression
was up-regulated in the
brain, the DNMTs mRNA ex-
pression was down-
regulated

[54]

Chlorpyrifos
(CPF)

1.16, 11.6
and
116 μg/L

Combined
ATR/CPF

1.13, 11.3
and
113 μg/L

Deltamethrin C57BL/6 N
mice

Oral intake 3 mg/kg During
gestation,
lactation, and
weaning at
postnatal day
(PND) 21

Deltamethrin insecticide and
stress exposure during
neurodevelopment leads to
alterations in dopamine
function (PND21–60).

Hypermethylation of Nr3c1
is in response to dual
deltamethrin and
corticosterone exposures
during development.

[55]

Corticosterone
Drinking water 25 μg/mL From

adolescence
through
adulthood
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observed chlorpyrifos could activate cell pyroptosis and
increases susceptibility on oxidative stress-induced tox-
icity by miR-181/SIRT1/PGC-1α/Nrf2 signaling pathway
[33]. In addition, the adverse effects of developmental
exposure to the active CPO have been proved to persist
into adulthood even future generations [79]. Schmitt
et al. demonstrated that early life stage exposures to
CPO can lead to epigenetic changes in neurological ac-
tivity, which may lead to alterations in response to CPO
in future generations [34]. Liu’ team also investigated
H3K4me3 and DNA methylation levels of the PPARγ
gene in the placenta was associated with prenatal chlor-
pyrifos exposure, and could effect on birth outcomes
and neurodevelopment [80].

Organochlorine pesticide
Organochlorine pesticide is another kind of insecticides.
Nowadayes, some OCPs are banned in most industrial-
ized countries. However, due to the very long half-life in
humans, the circulating levels of the breakdown product
of dchlorodiphenyltrichloroethane (DDT), p,p′-DDE (1,
1-dichloro2, 2-bis (p-chlorophenyl) ethylene) are still
found in almost all humans in the industrialized world.
Moreover, some OCPs, such as DDT is still used to
combat malaria in Asia and Africa [81]. Researches in
epidemiology showed workers with Parkinson’s disease
were related with exposure to organochlorines [77].
DDT is a common environmental organochlorine

pesticide with a long half-life. Because it can passes
through the placental barrier, DDT exposure during
pregnancy may heavily influence lifetime health of the
offspring.. An epidemiological study showed that pre-
natal exposure to DDT is associated with fetal genome-
wide DNA methylation [82]. Another cohort study also
investigated prenatal exposure to persistent organic pol-
lutants can induce DNA methylation of LINE-1 and im-
print genes in placenta [83].
Dieldrin is also a highly toxic organochlorine pesticide.

Although it was phased out of commercial use in the
1970s, dieldrin was still persisted in the environment
and easily accumulated in lipid-rich tissues like the
brain, due to its high stability and lipophilicity [84]. Pre-
vious epidemiology studies have shown a positive associ-
ation between dieldrin exposure and PD [85, 86].
Experimental researches also investigated that develop-
mental dieldrin exposure could alter DNA methylation
at genes related to dopaminergic neuron development
and Parkinson’s disease [35]. Song’ research revealed
that dieldrin induced a time-dependent increase in the
acetylation of core histones H3 and H4 in neuronal cells.
Moreover, the histone acetylation appeared within 10
min after exposure to dieldrin, suggesting that acetyl-
ation is an early event in dieldrin neurotoxicity [36].

Pyrethroid
Pyrethroid insecticides contain natural pyrethrins
which are extracted from pyrethrum flowers, and
their synthetic derivatives, pyrethroids [87]. Pyre-
throids with low mammalian toxicity are now com-
monly used for household and post-harvest insect
control [88]. However, pyrethroid pesticide exposures
may be also associated with disruption of neurological
functioning [89–92]. Neonatal exposure to permethrin
can induce a Parkinson-like disease.
Permethrin is a synthetic pyrethroid widely used as

anti-woodworm agent and for indoor and outdoor
pest control. However, early life permethrin exposure
induces long-term brain changes [93]. These long-
term changes were regulated by early impairment of
epigenetic pattern in neurodegeneration, such as DNA
methylation or histone alterations [37, 38]. In
addition, on the prospective intergenerational effect of
this pesticide, parental exposure also leads to global
DNA methylation changes and hydroxymethylation
impairment in their offspring, providing pivotal evi-
dences on intergenerational effects of postnatal expos-
ure to permethrin [39, 40]. Tevoltage-gated sodium
channel (VGSC), a motoneuronal transport protein, is
the target of all pyrethroids [94]. In addition, Kubik
et al. found miRNA-33 modulates permethrin induced
toxicity by regulating VGSC transcripts [95].

Herbicide
Herbicides are essential tool in weed management. The
first commercial herbicides were released in the 1940s
and hundreds more since then [96]. Among all the her-
bicides, the neurotoxicity paraquat (PQ) are probably
the most conclusive [97]. Paraquat exposure has been
linked to an increased risk for Parkinson’s disease [98],
and has been used for modeling sporadic Parkinson’s
Disease [99]. However, the impacts of PQ exposure on
the central nervous system remain unclear. In recent
years, epigenetic mechanisms involved paraquat induced
neurons damage have been extensively investigated in
order to explore new preventive and therapeutic targets
of Parkinson’s disease. Our team also do a lot of explor-
ation there [17, 30, 45, 47–51, 100]. The epigenetic mo-
lecular mechanisms were summarized in Fig. 2.
As shown in Fig. 2, DNA methylations were found

to be causative factors in paraquat induced neurons
damage. When pretreated with methyltransferase in-
hibitor 5′-aza-dC, the level of reactive oxygen species
(ROS) increased more significantly. The rate of bcl-2/
bax decreased, consequently enhancing the cell apop-
tosis induced by PQ. This work demonstrated the
interaction of DNA methylation and paraquat, provid-
ing additional new insights into the pathogenic mech-
anisms of PD [101].
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A major epigenetic change in chromatin can regulate
gene expression. Song et al. found that exposure to para-
quat could induced histone H3 acetylation in N27 dopa-
minergic cells in a time dependent manner. These
changes were associated with decreased total histone
deacetylase (HDAC) activity and HDAC4 and 7 protein
expression levels. Additionally, the inhibition of histone
acetyltransferase (HAT) activity by anacardic acid can
protect against apoptotic cell death induced by PQ, indi-
cating that histone acetylation may represent key epigen-
etic changes during neurotoxic insults [41].
Evidence indicates that miRNA also play a key role in

PQ involved neurodegenerative diseases. Zhou’s team
analyzed the impacts of PQ on the miRNome of human
neural progenitor cells (hNPCs) during proliferation.
Upon PQ treatment, 66 miRNAs were identified as dif-
ferentially expressed in proliferating hNPCs. With fur-
ther analysis, the target genes were found enriched in
regulation of cell proliferation and differentiation, cell
cycle and apoptosis as well as tumor protein 53 (p53),
Wnt, Notch and mitogen-activated protein kinases
(MAPK) signaling pathways [42]. Furtherly, they found
mRNAs and miRNAs expression changes induced by PQ
in hNPCs could lead to the alteration of several neuro-
development related key biological processes and crucial
pathways, especially Wnt signaling pathway. The results
suggested that PQ could downregulate Wnt signaling
pathway via miRNA to induce developmental neurotox-
icity [43]. In addition, they also found miR-200a was
down regulated in the PQ treated neural stem cell. This

process subsequently decreased cell viability, increased
epithelial-mesenchymal transition process and the inhib-
ited differential through CTNNB1 pathway [44]. The
transcription factor Nrf2 has been proved to regulate the
expression of many miRNAs, our previous work also
found that Nrf2 can promote the expression of miR-
380-3p, which blocks the translation of Sp3 protein and
enhances paraquat-induced toxicity in mouse neuro-
blastoma N2a cells [45]. Interestingly, Narasimhan et al.
explained the relationship between Nrf2 and miRNA
from a different perspective. Their study showed that
PQ induced miR153 dependent hydrogen peroxide
(H2O2), and then caused miR153 to bind to and target
Nrf2 3′ UTR thereby weakening the cellular antioxidant
defense [46].
Emerging evidence showing that oxidative stress and

DNA methylation can alter miRNA expression. Our pre-
vious work also investigated that PQ can induce DNA
methylation variations through ROS production, leading
to the downregulation of miR-17-5p expression [17].
The downregulation of miR-17-5p expression contrib-
utes to PQ-induced dopaminergic neurodegeneration
through influencing the cell proliferation, cell apoptosis
and S phase transition of the cell cycle [47]. Subse-
quently, we found long noncoding RNAs also play a cru-
cial part in PQ induced neurotoxicity. The alteration of
the lncRNA expression profile were found in PQ treated
mouse, suggesting lncRNAs were involved in PQ- in-
duced neurotoxicity. Further studies displayed PQ
caused lncRNA expression profiling alteration in the

Fig. 2 Epigenetic regulation in the context ofparaquat induced nerve cell damage. DAN methylation, m6A modification of circRNA,histone
acetylation, miRNA, and lncRNAs were involved in the epigenetic regulation process. The details of the molecular mechanisms were descripted in
the following text

Yu et al. Genes and Environment           (2021) 43:55 Page 7 of 12



substantia nigra (SN) through an interaction with Nrf2,
thus changing the NR_027648/Zc3h14/ Cybb and NR_
030777/Zfp326/Cpne5 mRNA pathways [48]. Latterly,
we proved PQ-induced low expression of AK039862 res-
cued microglia proliferation and migration inhibition via
the AK039862/Pafah1b1/Foxa1 pathway [49]. LncRNA
NR_030777 is another lncRNA involved in PQ induced
neurotoxicity. It is highly conserved among species and
was firstly confirmed by our team. Evidence illustrated
NR_030777 7 has a vital protective role in neurotoxicity
induced by PQ through regulating the expression of
Zfp326 and Copine 5 [50]. These novel discoveries sug-
gested lncRNAs could be a potential target for the pre-
vention and treatment of PQ-induced neurodegenerative
disorders such as PD. Recently, our team successfully
established a positive link between the alteration of cir-
cRNAs driven by m6A modification and PQ-induced
oxidative stress. Moreover, the alteration of m6A methyl-
ated circRNAs upon PQ exposure could be partially re-
versed by N-acetylcysteine (NAC) pretreatment,
providing a new preventive or therapeutic tools for PQ-
induced neurodegenerative disorders [51].

Other pesticides
In addition to the pesticides described above, there are
still some other pesticides, such as biological insecti-
cides, combination of various pesticides and some other
new low toxicity chemical pesticides. The epigenetic
mechanisms of their neurotoxicity were also
investigated.

Avermectin
Avermectin (AVM) is an effective insecticidal and nem-
aticidal agent, it has been extensively used in agriculture
and stock farming areas. Subsequently, the residues of
AVM or its active metabolites present a toxic threat
through epigenetic mechanisms. Cao et al. reported sub-
chronic exposure to AVM could decrease the mRNA ex-
pression levels of DNA methyltransferases (DNMT1 and
DNMT3a/3b), and increase the mRNA levels of
demethylase methyl-CpG-binding domain protein 2
(MBD2), consequently down regulated the global DNA
methylation level decreased in pigeon brain tissues [52].

Fipronil
Fipronil is a broad-spectrum chiral insecticide. It has
been documented to induce significant neurotoxicity to
nontarget aquatic species. Qian et al. firstly discussed
the enantioselective toxicity of chiral pesticide fipronil in
central nervous system, and find R-fipronil exhibited
more intense neurotoxicity compared with S-fipronil.
Further research revealed that R-fipronil disrupted five
signaling pathways including MAPK, Calcium signaling,
Neuroactive ligand-receptor interaction, Purine

metabolism, and Endocytosis. These pathways revealed
greater extent than S-fipronil through the hypermethyla-
tion of several important neuro-related genes. This study
indicated that the fipronil-conducted enantioselective
neurotoxicity by the dysregulation of DNA methylation,
providing a novel epigenetic insight into the study of
enantioselective biological effects [74].

Pesticide mixture
Nowadays, mixed formulation of pesticide is commonly
used to reduce insect resistance, achieve-control effi-
ciency and/or economic concers [102]. Xing et al. exam-
ined the effect of atrazine (ATR), chlorpyrifos (CPF) and
combined ATR/CPF exposure on DNA methylation in
the brain of zebra fish. Compared to the control fish, a
significant global DNA hypomethylation was observed in
the common carp exposed to ATR, CPF and their mix-
ture. Moreover, the MBD2 mRNA expression was up-
regulated and the DNMTs mRNA expression was down-
regulated in the brain and gonad of the common carp
exposed to ATR, CPF and their mixture [75]. Nuclear
receptor subfamily 3 group C member 1 (Nr3c1) is a
transcription factors necessary for proper dopamine
neuron development. Vester et al. also reported com-
bined neurodevelopmental exposure to deltamethrin and
corticosterone could induce Nr3c1 hypermethylation in
the midbrain of adult male mice [76].

Concluding remarks
The underlying cause of many neurological and neuro-
degenerative diseases are still unclear. However, it is
now widely accepted that the environmental toxicants
contribute to many of these disorders. Increasing evi-
dence indicates that the epigenome may be targeted on
people at risk for neurodegenerative disorders. Multiple
studies have indicated chronic exposure to pesticides at
a low dose could increase the risk of neurodegenerative
diseases. Epigenetic disruptions induced by pesticides,
which can induce neurotoxicity were summarized in this
work. Epidemiologic studies and experimental researches
performed both in vivo and in vitro provide evidence
that exposure to pesticides even at a low dose have long-
term effects on central nervous systems, possibly via epi-
genetic modifications. Individuals, exposure to neuro-
toxic in the early life and even in the womb could
induce epigenetic alterations in adulthood, the aged or
even next generations, moreover some of the alterations
are sex-depended. Meanwhile, compared with genetic
changes, epigenetic aberrations could be more easily re-
versible. Drugs, even some nutrients, which target the
specific epigenetic mechanisms involved in the regula-
tion of gene expression could be emerging preventive or
therapeutic tools for disease. In this review, there are
some evidences illustrated inhibits the epigenetic
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modification changes by compounds or regulates the ex-
pression of non-coding RNA by genetic tools might alle-
viate pesticide induced neurological and
neurodegenerative impairments. These will shed new
light on the precise prevention and targeted treatment
for the neurodegenerative diseases. However, a great
deal of further investigations is still needed. For instance
(1) explore how pesticides exposure leads to epigenetic
alteration in specific genes; (2) identify the susceptible
genes of human in the epigenetic alterations induced by
exposure to pesticides; (3) prove whether epigenetic
changes can be used as biomarkers for the early detec-
tion and treatment target for neurodegenerative disor-
ders; (4) develop novel epigenetic modification
inhibitors; (5) explore the epigenetic mechanisms of
some novel and mixtures of pesticides.
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