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Abstract

1,3-Butadiene (BD) is a petrochemical manufactured in high volumes. It is a human carcinogen and can induce
lymphohematopoietic cancers, particularly leukemia, in occupationally-exposed workers. BD is an air pollutant with
the major environmental sources being automobile exhaust and tobacco smoke. It is one of the major constituents
and is considered the most carcinogenic compound in cigarette smoke. The BD concentrations in urban areas
usually vary between 0.01 and 3.3 μg/m3 but can be significantly higher in some microenvironments. For BD
exposure of the general population, microenvironments, particularly indoor microenvironments, are the primary
determinant and environmental tobacco smoke is the main contributor. BD has high cancer risk and has been
ranked the second or the third in the environmental pollutants monitored in most urban areas, with the cancer
risks exceeding 10-5. Mutagenicity/carcinogenicity of BD is mediated by its genotoxic metabolites but the specific
metabolite(s) responsible for the effects in humans have not been determined. BD can be bioactivated to yield
three mutagenic epoxide metabolites by cytochrome P450 enzymes, or potentially be biotransformed into a
mutagenic chlorohydrin by myeloperoxidase, a peroxidase almost specifically present in neutrophils and
monocytes. Several urinary BD biomarkers have been developed, among which N-acetyl-S-(4-hydroxy-2-buten-1-yl)-
L-cysteine is the most sensitive and is suitable for biomonitoring BD exposure in the general population. Exposure
to BD has been associated with leukemia, cardiovascular disease, and possibly reproductive effects, and may be
associated with several cancers, autism, and asthma in children. Collectively, BD is a ubiquitous pollutant that has
been associated with a range of adverse health effects and diseases with children being a subpopulation with
potentially greater susceptibility. Its adverse effects on human health may have been underestimated and more
studies are needed.
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Introduction
1,3-Butadiene (BD), a colorless gas, is an important
petrochemical manufactured in high volumes that is pri-
marily used to produce synthetic rubber and thermo-
plastic resins. BD is a ubiquitously environmental
pollutant because it is formed as a product of incom-
plete combustion of fossil fuels and biomass [1]. It is

one of volatile organic compounds (VOCs) monitored
routinely in the ambient air.
BD was determined to be a human carcinogen by the

U.S. Environmental Protection Agency (EPA) in 2002 [1]
and by the International Agency for Research on Cancer
(IARC) in 2008 (Group 1 carcinogen) [2]. BD induces
lymphohematopoietic cancers in occupationally-exposed
workers [1, 2]. It is one of 187 hazardous air pollutants
(HAPs), also known as air toxics, as defined by EPA [3].
BD was fully reviewed in the official document “Health

Assessment of 1,3-Butadiene” issued by EPA in 2002 [1]

© The Author(s). 2022 Open Access This article is licensed under a Creative Commons Attribution 4.0 International License,
which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if
changes were made. The images or other third party material in this article are included in the article's Creative Commons
licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons
licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain
permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.
The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the
data made available in this article, unless otherwise stated in a credit line to the data.

* Correspondence: xyzhang999@shsmu.edu.cn
School of Public Health, Hongqiao International Institute of Medicine,
Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China

Chen and Zhang Genes and Environment            (2022) 44:3 
https://doi.org/10.1186/s41021-021-00233-y

http://crossmark.crossref.org/dialog/?doi=10.1186/s41021-021-00233-y&domain=pdf
http://orcid.org/0000-0003-3472-8393
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
mailto:xyzhang999@shsmu.edu.cn


and in Volume 97 of the IARC Monographs on the
Evaluation of Carcinogenic Risks to Humans published
in 2008 [2]. In the two documents, almost all aspects of
BD were discussed in great detail. In 2012, IARC pub-
lished Volume 100F and provided an update on BD
based on newly available data [4]. In addition, the me-
tabolism, DNA adducts, toxicology, genotoxicity, and the
carcinogenic modes of action of BD were also reviewed
in 2007 and 2010 [5–8]. However, since then many new
studies, in particular, the epidemiological studies con-
cerning the associations with several diseases in children,
have been published but have not been reviewed yet.
Thus, in this review, we will provide an update on major
progress in BD-related studies over the last decade.
However, we do not try to include all BD-related litera-
ture published during this period. Rather, we will focus
on progress in the following aspects: environmental
sources, airborne concentrations, human exposure, can-
cer risks, metabolism, urinary biomarkers, genotoxicity
in humans, and associations with diseases. Additionally,
because BD is one of the major constituents in tobacco
smoke, we discuss the possible contribution of BD to to-
bacco smoking-associated diseases, with the focus being
on cancers of lung and larynx.

The environmental sources of BD
BD has many environmental sources, including indus-
trial emissions from production of BD, rubber, and
resins, automobile exhaust, tobacco smoke, and exhaust
from biomass burning and cooking [1]. According to
EPA, automobile exhaust and miscellaneous combustion
sources contribute 78.8% and 19.6% of the total BD
emissions in the environment, respectively. The indus-
trial emissions account for only 1.6% of the total BD
amounts in the environment, in spite of the fact that tre-
mendous amounts of BD are produced and used in
petrochemical and synthetic rubber industries [1].
Automobile exhaust is the primary source of BD in

the environment due to the enormous amounts of fuels
consumed by automobiles [1]. The average emission fac-
tor of vehicles was reported to be 2.1 ± 1.5 mg/km in
1997 [9] and 0.7 ± 0.4 mg/km in 2018 [10]. However,
the emission factors are substantially greater in con-
gested traffic compared with those under highway cruise
conditions [11]. The BD emissions reduce when vehicles
use fuels containing ethanol [12] but increase for bio-
diesel [13]. It has been estimated that on-road and non-
road motor vehicles contribute to 51% and 20% of the
BD emissions in urban counties in the United States, re-
spectively [14].
Cigarette smoke contains significant amounts of BD

and can thus be the primary source in indoor air [1].
The yields of BD in cigarette smoke are 12-92 μg/
cigarette in the mainstream smoke [15–17] and 205-361

μg/cigarette in the sidestream smoke [18]. Similarly,
smoke of other tobacco products also contains BD. Bidi,
an indigenous form of cigarette in South Asian coun-
tries, was reported to produce 63.8 μg BD/bidi in the
mainstream smoke [19]. The BD yields in the main-
stream smoke of 60 commercial U.S. little cigars vary
from 46 to 243 μg/cigar [20].
A source that may be important for certain microenvi-

ronments is smoke released by cooking oils at high
temperature. It has been known that heating of cooking
oil releases BD [1]. The BD levels released depend on
the types of cooking oil and temperature [21, 22]. For
example, the vapor of unrefined Chinese rapeseed oil
heated to 275 °C contains ~500 μg/m3 of BD, which is
4- and 14-fold higher than that in the vapor generated at
240 and 185 °C, respectively. This BD concentration is
also 9- and 22-fold higher than that in the vapor re-
leased from heated soybean oil and peanut oil, respect-
ively [21]. The smoke released during cooking Sichuan,
Cantonese, and Shanghai cuisine contains BD at 12.87,
4.53, and 4.20 μg/m3, respectively [23].
In recent years, many newly-identified sources have

been reported, including emissions from oil and natural
gas extraction industry [24], pyrolysis of waste plastics
[25], pulp and paper industry [26], domestic waste land-
fill sites [27], household laser processing machines [28],
and emissions from operations during electrosurgery
[29–32], and from plants [33] and a soil bacterium spe-
cies [34]. Among them, two types of sources are worth
special attention. One of them is the surgical smoke gen-
erated during electrosurgery, which contains exceedingly
high concentrations of BD (up to 42 mg/m3 or 19.06
ppm [29]) and thus may pose great cancer risks for op-
erating room personnel [29–32]. The other is the natural
sources; recently it was reported that BD was one of the
dominant non-methane hydrocarbons generated by
Pinus massoniana and Schima superba, two tree species
native to southern China, with the emission rates varying
from 10 to 65 nmol (0.54 to 3.5 μg)/g dry leaves/h [33].
BD was also reported to be generated by Bacillus artro-
phaeus LSSC22, a soil bacterium strain, and be able to
inhibit proliferation and chemotaxis of Ralstonia solana-
cearum (Rsc) TBBS1, the phytopathogen causing bacter-
ial wilt disease in tobacco [34]. These studies are the
first reports on the natural sources of BD.
Because automobile exhaust contributes a majority of

the BD emissions in the environment, BD is generally
accepted as a mobile source pollutant or a traffic-related
pollutant [35, 36]. Nonetheless, several population-based
studies have revealed that environmental tobacco smoke
(ETS) is a primary contributor to human BD exposure
(see below). In other words, ETS is the main source for
the general population in terms of human exposure. The
observation is important for epidemiological studies.
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The airborne concentrations of BD
The BD concentrations in the ambient air vary widely
and are dependent on locations or sites, which can be
roughly divided into two categories: industrial/industry-
related sites and non-industrial sites. Obviously, the lat-
ter is more important for the general population.
Unsurprisingly, the BD concentrations at industrial

and industry-related sites, e.g., sites close to industrial fa-
cilities, are usually higher in comparison with those at
non-industrial sites [35]. For example, a maximal BD
concentration of 27 ppb (60 μg/m3) was observed in a
county downwind of a refinery facility in the Industrial
Heartland of Alberta, Canada’s largest hydrocarbon pro-
cessing center [37]; an overall arithmetic mean of 120
μg/m3 was reported for various industries in Italia dur-
ing 1996-2015 [38]. Gallego et al. reported that the BD
concentrations in a few Catalan urban areas in Spain
near petrochemical facilities ranged from 15 to 33 μg/m3

[39]. A study to measure VOCs at 16 sampling sites in
the North Industrial Complex of Tarragona, Spain, re-
ported a BD range from 0.31 to 15.19 μg/m3 [40].
The BD concentrations at non-industrial sites vary

greatly. Huy et al. compiled the BD concentrations in dif-
ferent countries and regions reported in the literature
[41]. The average concentrations range from 0.01 to 3.3
μg/m3, but the developed countries or regions (e.g., Hong
Kong) have lower concentrations (0.01-0.91 μg/m3) com-
pared to the developing countries (0.35-3.3 μg/m3) [41].
An EPA official document released in 2012 provided the
range of the mean BD concentrations in U.S. cities and
suburban areas, and the average background concentra-
tion, which were 0.1-2 and 0.13 μg/m3, respectively [42].
The BD concentrations in rural areas (0.002-0.125 μg/m3)
are typically one order of magnitude lower than those in
urban areas [35, 41]. Furthermore, in urban areas, the BD
concentrations at commercial sites, particularly at sites
close to the street level in the urban core, are usually
higher than those at residential sites [35]. A modeling
study of the BD concentrations in Minnesota, U.S.,
showed that the concentrations were the highest in the
center of the metro area and decreased with distance from
there [43]. Technological advances have led to significant
decreases in the ambient air levels of BD and other VOCs
in developed countries [35, 44–47].
However, in terms of human exposure, the BD concen-

trations in microenvironments, particularly indoor micro-
environments, where people spend most of time, are more
important than those in the ambient environment. Import-
antly, the BD concentrations in microenvironments are
often unrelated to the ambient measurements at nearby
monitors [48], which mostly reflect the BD concentrations
in near-road environments [36]. A recent report also found
that there was no association between ambient VOC levels,
including BD, and personal exposures [44].

The BD concentrations in microenvironments vary
widely depending on the proximity to emission sources
and their magnitudes. Automobile exhaust and ETS are
the major sources of BD at non-industrial sites, as a re-
sult, the microenvironments with these sources often
show relatively high BD concentrations. Indeed, the
roadside BD levels are usually higher than the back-
ground levels [14, 35, 36]. Exhaust from biomass burn-
ing is also an important source of BD in the
environment, consequently, some special microenviron-
ments with the source can have elevated BD levels.
Temples are one of such microenvironments due to in-
cense burning; an air BD concentration as high as 10.46
μg/m3 inside three temples in Thailand has been re-
ported [49]. Important microenvironments concerning
human exposure include:
1) Vehicles. In a study to investigate the concentra-

tions of VOCs in urban domestic and public microenvi-
ronments, Kim et al. found that the mean BD
concentration in automobile was 7.9 μg/m3, which was
the highest in all microenvironments examined [50].
Even the air surrounding moving vehicles contains rela-
tively high concentrations of BD; a mean of 3.0 μg/m3

and a maximum of 6.9 μg/m3 have been reported [1].
2) Rooms with smoking. Cigarette smoke contains sig-

nificant amounts of BD, as a result, the BD concentra-
tions in smoke-filled rooms can be high. An experiment,
which was performed in a ventilated 18 m3 laboratory
chamber with 6 cigarettes being smoked, showed that
the BD concentrations were 122, 34, and 3.9 μg/m3 as
measured at 20 min, 2 h, and 18 h after smoking had
ended, respectively [51]. Before a smoking ban was im-
plemented in Ireland, the average BD concentration in
pubs was reported to be 4.15 μg/m3 [52]. A mean BD
concentration of 1.7 μg/m3 in smoking homes, which is
3.4 times higher than that in nonsmoking homes, has
been reported [50].
3) Certain restaurants and kitchens. Recently, Huang

et al. reported that the dining area in a Chinese hot-pot
restaurant had a BD concentration of 7.73 μg/m3, prob-
ably due to the use of gas stoves [23]. Kitchens, espe-
cially those cooking Chinese cuisine by using high-
temperature oils, can be a potential microenvironment
with relatively high BD concentrations due to the BD re-
lease from heated oils.
4) Operating rooms. Because the surgical smoke

generated during electrosurgery contains extremely
high concentrations of BD [29], plus most surgeons
do not use smoke management at all [30, 32] or the
mobile smoke evacuation systems cannot effectively
remove BD in the smoke [29], the operating rooms
performing electrosurgery can be an indoor micro-
environment with relatively high BD concentrations.
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Human exposure to BD
Human exposure to BD can be divided into two categor-
ies: occupational and non-occupational. Occupational
exposure usually occurs at industrial sites, and the ex-
posure levels are generally high but are dependent on
the types of industry, activity sectors, and occupational
groups. An investigation on Italian working force indi-
cated that the exposure levels in most activity sectors or
occupational groups ranged between 10 and 200 μg/m3,
but the exposure levels in the manufacture of rubber
and plastic products (320-360 μg/m3), and the manufac-
ture of coke and refined petroleum products (340-390
μg/m3) were significantly higher than those in other sec-
tors [38]. The firm size can influence the exposure levels
as well; micro- and small enterprises have greater prob-
ability to show higher exposure levels [38]. In a petro-
chemical plant in Iran, the BD exposure level reaches
560.82 ± 811.36 μg/m3 [53]. However, technical ad-
vances and changes in the operating practices can
greatly reduce the human exposure. For example, two
studies published in 2016 and 2017 reported low expos-
ure levels in the Swedish petroleum refinery industry,
which varied from 0.3 to 22.4 μg/m3, depending on the
occupational groups [54, 55]. Similarly, a study published
in 2017 reported that the BD exposure level in the vicin-
ity of a major petrochemical complex in Thailand was as
low as 0.04 μg/m3 [56].
Recently, some newly-identified occupations outside

the common activity sectors are found to have low to
moderate BD exposure levels, which include under-
ground coal miners (~2.1 μg/m3) [57], firefighters (23.6
μg/m3), police forensic investigators (9.68 μg/m3) [58],
and hairdressers [59]. It is noted that exposure of hair-
dressers to BD was assessed through the levels of urinary
BD biomarkers rather than through measuring the air-
borne BD concentrations; the median concentration of a
BD biomarker among hairdressers, who were all female,
was found to be more than 5 times higher compared to
women in the general population [59].
On the other hand, non-occupational exposure to BD

is widespread and microenvironments can be the pri-
mary determinant. Because humans usually spend most
of time indoors rather than outdoors, human exposure
to BD is mainly dependent on the concentrations in in-
door microenvironments. Kim et al. determined personal
exposures of 12 urban dwellers to VOCs by direct mea-
surements via personal monitoring and discovered that
exposure at home contributed to 51-87% of overall indi-
vidual exposure to BD [60]. Similarly, Huy et al. reported
that exposure at home dominantly contributed to the
total cancer risk caused by BD (56-86%) [41]. In another
study, Du et al. estimated that ~70% of the overall can-
cer risks caused by 16 HAPs (including BD) in China
was attributed to exposure to these pollutants at home

[61]. In a recent population study, Konkle et al. found
that, although the ambient air concentrations of 11
VOCs in the United States, including BD, decreased
from 2005 to 2013, all corresponding urinary metabo-
lites of the VOCs increased over approximately the same
timeframe except for one metabolite [44]. As pointed
out by the authors, the finding indicated that these
VOCs in the ambient air were not the major source of
VOC exposure [44], thus providing indirect support for
the role of microenvironments in exposure to BD and
other VOCs.
For non-occupational exposure to BD, ETS can be a

principal contributor. Measurements of the BD concen-
trations in indoor air before and after the implementa-
tion of a smoking ban in Ireland provide direct evidence
of the contribution of ETS to the BD levels in indoor
microenvironments. The airborne BD concentration
prior to the implementation of the ban, which was 4.15
μg/m3, dropped down by nearly 20-fold to 0.22 μg/m3

after the ban was fully implemented [52].
As mentioned above, BD is generally considered an

automobile source pollutant or a traffic-related pollu-
tant, however, the results from several population stud-
ies suggest that human exposure to BD is mostly
attributed to ETS. In a study to investigate biological
monitoring of exposures to ETS in the general popula-
tion, Aquilina et al. observed that urinary concentration
of cotinine, a well-known ETS biomarker, showed sig-
nificant correlation with the individual exposure to air-
borne BD that was measured with personal exposure
samplers [62]. The finding suggests that ETS is a signifi-
cant source of exposure to BD for the general popula-
tion. In a study assessing exposure to VOCs among
pregnant women in the United States, Boyle et al. found
that smoking was positively associated with the metabol-
ite levels of BD [63]. The results obtained from a recent
study on nearly 6,000 participants indicated that tobacco
smoke was a major source of BD exposure in the general
U.S. population [64]. These reports are consistent with
the evaluation for residential exposures of U.S. non-
smokers based on material-balance modeling; the evalu-
ation indicated that ETS was the dominant source of en-
vironmental inhalation intake for BD, which was
estimated to be 16-37 μg/day [65]. Taken together, for
the general population, it appears that the indoor micro-
environments are the dominant factor in human expos-
ure to BD, and ETS is the primary source of BD in these
microenvironments.
A special microenvironment that might lead to rela-

tively high exposure to BD is kitchens with the cooking
practice using high-temperature oils. However, the stud-
ies concerning the microenvironment have been ex-
tremely scarce. Using the levels of urinary biomarkers as
the metric to assess exposure to VOCs, an investigation

Chen and Zhang Genes and Environment            (2022) 44:3 Page 4 of 22



on Chinese women who regularly cook at home has
failed to provide support for the women to experience
elevated BD exposure. However, the size of the study is
quite small and many confounders can have influenced
the outcome [66].
Interestingly, exposure to BD was found to be

dependent on socio-demographic characteristics. The
populations with a high percentage of ethnic/racial mi-
norities and low income tend to have higher exposure
levels [67].

The cancer risks of BD
BD has high cancer risks. The inhalation unit cancer risk
determined by EPA is 3 × 10-5 per μg/m3 or 0.08 per
ppm, in other words, 0.03 μg/m3 of BD causes a bench-
mark cancer risk of 1 × 10-6 [1, 68]. Because the ambient
BD concentrations in most urban areas usually range
from approximately 0.1 to 1 μg/m3, the cancer risk for
the general population in cities is around 10-5 [41]. This
has been demonstrated by many studies [24, 61, 69–73].
The concentrations of BD in small cities and rural areas
are usually lower, as a result, the cancer risks are lower
(approximately 10-6) [74, 75]. On the other hand, the
cancer risks at industrial sites or in areas with industrial
point sources of BD are usually high [76]; the risks at
heavily-polluted sites or those caused by occupational
exposure can even reach 10-3 [27, 53, 77]. Due to its
high inhalation unit cancer risk, BD is often a major
contributor to the total cancer risks caused by VOCs in
industrial sites. For example, an investigation on
process-specific emission characteristics of VOCs from
petrochemical facilities in the Yangtze River Delta,
China, found that the process unit producing BD had
the largest cancer risk [78].
Because human exposure to BD is dominantly attributed

to ETS, the cancer risks caused by residential exposure are
usually greater than those caused by the ambient air. The
cancer risks caused by residential exposure for U.S. non-
smokers have been estimated to be 4.2 × 10-5-5.3 × 10-4

by using material-balance modeling [65].
BD is one of the environmental pollutants with the

highest cancer risks. In almost all studies to investigate
the cancer risks of pollutants, BD has been ranked as
one of the top pollutants. In 2007, a U.S. study showed
that among 17 pollutants, benzene, formaldehyde, and
BD were the top three pollutants with the cancer risks
on the order of 10-5-10-4 [79]. In another study, McCar-
thy et al. used the EPA national ambient air quality data
for the period 2003 through 2005 and found that among
65 air toxics, concentrations of benzene, carbon tetra-
chloride, arsenic, BD, and acetaldehyde exceeded the 10–
6 benchmark level at most sites in the United States [80].
In an investigation conducted in Tianjin, China, ben-
zene, BD, and chloroform were listed as the top three

pollutants among 10 monitored VOCs [81]. Du et al.
compiled the data of 16 HAPs mostly from 2003 to 2013
in urban areas of China, and concluded that formalde-
hyde, 1,4-dichlorobenzene, benzene, and BD were the
major risk contributors, which yielded the highest cancer
risks (all > 10-5) [61]. Dhaini et al. investigated the can-
cer risks of air pollutants in Beirut, Lebanon, and discov-
ered that benzene and BD were the major contributors,
which accounted for 39-43% and 25-29% of the cumula-
tive risks, respectively [71]. In Xi’an, China, formalde-
hyde, BD, and 1,2-dichloroethane were found to be the
top three contributors to the cancer risks [70]. In two
coastal cities in Metro Vancouver, Canada, the top pol-
lutants were determined to be carbon tetrachloride, ben-
zene, and BD [72]. In Calgary, another Canadian city,
the same three pollutants were also listed as the top con-
tributors to the cancer risks [24].

The metabolism of BD
BD is an indirect carcinogen, i.e., it must be biotrans-
formed into metabolites to exert its mutagenicity/car-
cinogenicity. Actually, non-carcinogenic effects of BD
are also considered to be mediated by its metabolites [1].
It has long been known that BD can be metabolized to

form 3,4-epoxy-1-butene (EB) by cytochrome P450 en-
zymes (P450s), which can be further biotransformed into
1,2,3,4-diepoxybutane (DEB) by P450s, or into 3-butene-
1,2-diol (BDD) by epoxide hydrolase (Fig. 1). BDD can
be converted to 3,4-epoxybutane-1,2-diol (EBD) by
P450s [1, 6], which was recently reported to undergo
further bioactivation to form a bifunctional epoxy alde-
hyde [82]. DEB can also be converted to EBD by epoxide
hydrolase. The three epoxides, EB, DEB, and EBD, can
readily react with nucleosides and DNA to yield DNA
adducts, and are genotoxic and mutagenic [7, 83–87]. In
vivo, BDD and EBD are the most abundant metabolites,
and DEB is the metabolite with the lowest concentra-
tions [6, 7, 88].
Because of the presence of two epoxy moieties in the

molecule, DEB not only has stronger reactivity in com-
parison with EB and EBD [89–91], but also can form
DNA cross-links [7, 83, 92–96] and DNA-protein cross-
links [97]. As a result, clastogenicity of DEB is very high;
among ~100 IARC carcinogens (Group 1, 2A, and 2B),
DEB shows highest level of micronucleus (MN) induc-
tion in mice [98]. DEB is the most genotoxic and muta-
genic metabolite among the three epoxides with the
relative potencies of DEB >> EB > EBD [6, 7]. However,
it should be noted that the relative potencies can be dif-
ferent when considering the stereochemistry of the me-
tabolites. A specific EBD stereoisomer, (2R,3S)-EBD, has
been found to be at least 30-fold more mutagenic than
the other three EBD stereoisomers [99]. Importantly, the
mutagenic potency of (2R,3S)-EBD is 10-to-20-fold

Chen and Zhang Genes and Environment            (2022) 44:3 Page 5 of 22



greater than EB stereoisomers and is only 5-to-10-fold
less than DEB stereoisomers [99].
An alternative metabolic pathway has been proposed,

in which BD is converted to 1-chloro-2-hydroxy-3-bu-
tene (CHB) in the presence of hydrogen peroxide and
chloride anion (> 50 mM) by myeloperoxidase (MPO), a
peroxidase almost specifically present in neutrophils and
monocytes [100–102]. CHB, a chlorohydrin, can be con-
verted to 1-chloro-2-buten-2-one (CBO) and 1-chloro-
3,4-epoxy-2-butanol (CEB) by P450s or alcohol dehydro-
genase (ADH) [103–105]. CBO, a strong Michael ac-
ceptor, rapidly reacts with glutathione (GSH) to yield
GSH conjugates [103], and can also readily react with
nucleosides and DNA to form multiple DNA adducts
[106–109], among which an adenine adduct, A-2D (Fig.
1), was detected in cells treated with low concentrations
of CBO [109]. Importantly, CHB is mutagenic as deter-
mined by the Ames test, and CHB, CBO, and CEB are
all genotoxic as assessed by the comet assay with CBO
being much more potent than CHB, CEB, and also DEB
[105, 110].
The alternative metabolic pathway may exist in the

bone marrow and blood, which contains abundant neu-
trophils. Preliminary data showed that the MPO-
mediated metabolism of BD could occur in murine neu-
trophils and fresh human blood [111]. Thus, it has been
proposed that this pathway may play a role in

carcinogenesis of BD in humans [101, 102], because the
lymphohematopoietic system, i.e., the bone marrow, is
the target organ for BD in humans on the basis of the
epidemiological studies [1, 68].
Although it has been established that the mutagenic

and carcinogenic effects of BD are caused by its geno-
toxic metabolites, the specific metabolite(s) responsible
for the effects are still in debate. Among the three epox-
ides, DEB is often considered to be the ultimate culprit
responsible for BD mutagenicity/carcinogenicity [95,
112, 113] due to its highly genotoxic and mutagenic po-
tency compared to EB and EBD [6, 7, 83, 84]. On the
other hand, EB and EBD have also been proposed to be
the predominant cancer-initiating metabolites due to
their much higher in vivo concentrations (especially
EBD) compared to DEB [114], and the role of EBD has
been implicated through experiments in BDD-dosed
mice and rats [87].
Making the issue more complex, what metabolite(s)

are responsible for BD mutagenicity/carcinogenicity ap-
pears to be species- and BD concentration-dependent
[87]. Specifically, the culprits are considered to be DEB
in mice, and EB and/or EBD in rats; or, DEB and EBD
are considered responsible for the toxic effects of BD at
low and high BD levels, respectively [87, 114]. For
humans, the issue remains to be elucidated but DEB is
thought to contribute little to BD carcinogenicity and

Fig. 1 The metabolic pathways of BD. The P450-mediated metabolism is an established pathway and the MPO-mediated one is a proposed
pathway. (P450s, cytochrome P450 enzymes; ADH, alcohol dehydrogenase; MPO, myeloperoxidase; GSH, glutathione)
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EBD may cause the greatest risk [115, 116]. Another
study estimates that DEB and EBD contribute 7% and
92% to the total genotoxic dose in humans, respectively
[117]. Consistent with the observation is the finding that
treosulfan, a chemotherapeutic agent that is non-
enzymatically converted to DEB as its bioactive form
[118], induces different histological subtypes of lympho-
hematopoietic neoplasms (acute myeloid leukemia) from
those caused by occupational exposure to BD. Therefore,
it has been speculated that monoepoxide metabolites
may play a more important role than DEB in BD car-
cinogenesis in humans [119].

Urinary biomarkers of BD
Urinary BD biomarkers reported in the literature
EB, DEB, EBD, and CBO (Fig. 1) are reactive metabolites
and can react with proteins (e.g., hemoglobin) and DNA.
The products formed, i.e., hemoglobin and DNA ad-
ducts, can be used as biomarkers [120, 121]. Meanwhile,
these metabolites can also undergo biotransformation
via the mercapturic acid pathway to yield N-acetyl-L-
cysteine (NAC) conjugates, which are excreted in urine
and can be used as biomarkers as well. BDD and CHB
need to be converted to other intermediates, presumably
hydroxymethyl vinyl ketone and CBO, respectively, be-
fore biotransformation via the mercapturic acid pathway.
However, to detect hemoglobin and DNA adducts,

blood and tissue samples are usually needed, which
greatly restricts the application of these biomarkers in
studies involving human subjects due to the difficulty in
collecting the specimens. By contrast, urine is readily
available and has fewer biohazard concerns. Moreover, a
large proportion of absorbed BD (usually 30-60% as ob-
served in mice, rats, and monkeys) is excreted in urine
as biotransformed products [122, 123], therefore, the
amounts of the biotransformed products in urine are ex-
pected to be larger than those in other biological matri-
ces (e.g., blood and tissues). As a result, urinary BD
biomarkers have been widely used, particularly in studies
concerning human subjects. Thus, in this section, we
will only review progress in urinary BD biomarkers.
Through the mercapturic acid pathway, EB is primarily

biotransformed into two regioisomers, N-acetyl-S-[1-(hy-
droxymethyl)-2-propen-1-yl]-L-cysteine (MHBMA1) and
N-acetyl-S-(2-hydroxy-3-buten-1-yl)-L-cysteine
(MHBMA2) (Fig. 2) (it should be noted that each of the
two regioisomers consists of two diastereomers), which
are collectively called monohydroxybutenyl mercapturic
acid (MHBMA) [2, 124, 125]. In addition, a small frac-
tion of EB can undergo a rearrangement of double bond
to yield N-acetyl-S-(4-hydroxy-2-buten-1-yl)-L-cysteine
(configurations unspecified, presumably trans-), a trace
product usually called MHBMA3 [126, 127]. The corre-
sponding biotransformation products of BDD, EBD,

DEB, and CHB are N-acetyl-S-(3,4-dihydroxybutyl)-L-
cysteine (DHBMA), N-acetyl-S-(2,3,4-trihydroxybutyl)-
L-cysteine (THBMA), 1,4-bis(N-acetyl-L-cystein-S-yl)bu-
tane-2,3-diol (bis-BDMA), and 1,4-bis(N-acetyl-L-
cystein-S-yl)-2-butanone (NC1) (Fig. 2), respectively
[103, 104, 113, 125, 128, 129].
DNA adducts can be released from DNA spontan-

eously or via the DNA repair process. The DNA adducts
released are eventually excreted in urine and thus can
also be used as urinary biomarkers. Although many BD-
derived DNA adducts have been identified [7], so far
only two DNA adducts, N7-[1-(hydroxymethyl)-2-pro-
pen-1-yl]guanine (EB-GII) and 1,4-bis(gua-7-yl)-2,3-
butanediol (bis-N7G-BD), have been used as urinary bio-
markers [130, 131].

MHBMA and DHBMA
MHBMA and DHBMA are the classic biomarkers of BD
and have been used for almost 30 years [124, 132, 133].
They are the major metabolites of BD in urine with the
sum of the amounts constituting 50-90% of the total
amounts of all urinary metabolites in different species
(mouse, rat, hamster, and monkey) [125]. In humans,
DHBMA is the most abundant metabolite in urine and
is readily detected [113, 132]. MHBMA is more sensitive
that DHBMA [133–136]. The two biomarkers, especially
DHBMA, have been used in population-based studies
[44, 64, 136].
Due to the difficulty in chromatographic separation of

the two regioisomers, in most studies the sum of the
amounts of MHBMA1 and MHBMA2 is used as a single
biomarker (i.e., MHBMA) [124, 135–138]. In some stud-
ies, the two regioisomers are separated and the concen-
trations of individual regioisomers are reported. The
data obtained show that MHBMA2 is the dominant iso-
mer in human urine [64, 139].

MHBMA3
MHBMA3 is a biomarker that is worth special attention.
The metabolite was first discovered in 1995 through the
reaction of EB with NAC under reflux; its structure was
characterized but the configuration (trans- or cis-) was
not determined. However, this product failed to be de-
tected in urine of rats and mice administered EB [126].
It turned out to be an issue of sensitivity of the instru-
mental method, because in a subsequent study, Richard-
son et al. successfully detected the metabolite in urine of
rats and mice administered 14C-labeled EB. Nonetheless,
MHBMA3 was a trace metabolite with the amounts be-
ing only 0.5% of the administered doses or even less
[127]. In 1999, the metabolite was detected in urine of
mice exposed to 14C-labeled BD but accounted for only
0.1% of the administered doses, however, it was virtually
not present in urine of rats under the same BD exposure
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[128]. It is noted that in the experiment, the amount of
MHBMA was at least 120-fold greater than that of
MHBMA3 [128].
Probably due to its tiny amounts in urine of rats and

mice, no studies concerning MHBMA3 have been pub-
lished over the following decade. The next study involving
the metabolite was published in 2012, when Alwis et al.
detected MHBMA3 in human urine for the first time
[139]. It is worth noting that the urine samples were col-
lected from the general U.S. population, rather than the
subpopulation with high exposure (workers occupationally
exposed to BD). Furthermore, it is unexpected that
MHBMA3 turned out to be the most abundant metabolite
in human urine among the three EB-derived metabolites
(MHBMA1, MHBMA2, and MHBMA3, which were
quantitated separately) with the concentrations being 36 ±
34 and 6.40 ± 10 ng/mL for smokers and non-smokers, re-
spectively. Surprisingly, MHBMA3 had a very high fre-
quency of detection (99%). By sharp contrast, MHBMA1
failed to be detected in a vast majority of samples (either
smokers or non-smokers) and MHBMA2 was detected
only in urine of smokers but its concentrations were very

low [the mean concentration was 1.80 ± 2.10 ng/mL with
the limit of detection (LOD) being 0.70 ng/mL] [139]. The
finding was confirmed by a recently published study with
5,897 participants, in which the frequency of detection of
MHBMA1 and MHBMA2 in urine samples was only 0.7%
and 9.8%, respectively [64]. This is opposite to the obser-
vation in animal experiments, in which MHBMA1 and
MHBMA2 were overwhelmingly dominant metabolites
formed, and MHBMA3 could hardly be detected [128].
Following the report of Alwis et al., more than 10

studies on the general population using MHBMA3 as
the BD biomarker have been published, with most stud-
ies being conducted in the U.S. populations [44, 63, 64,
140–153]. These studies performed in the general U.S.
populations showed similar results to those reported by
Alwis et al. [139]. However, the results obtained in the
populations in other countries and regions are different.
Chiang et al. reported that the mean MHBMA3 concen-
trations in 55 Taiwanese smokers and 55 non-smokers
were 129.2 ± 99.2 and 52.3 ± 36.8 ng/mL, respectively
[140], which were considerably higher than that reported
by Alwis et al., in particular, the concentrations in non-

Fig. 2 The structures of the urinary BD biomarkers reported in the literature. MHBMA1, N-acetyl-S-[1-(hydroxymethyl)-2-propen-1-yl]-L-cysteine;
MHBMA2, N-acetyl-S-(2-hydroxy-3-buten-1-yl)-L-cysteine; trans- and cis-MHBMA3, trans- and cis-N-acetyl-S-(4-hydroxy-2-buten-1-yl)-L-cysteine;
DHBMA, N-acetyl-S-(3,4-dihydroxybutyl)-L-cysteine; THBMA, N-acetyl-S-(2,3,4-trihydroxybutyl)-L-cysteine; bis-BDMA; 1,4-bis(N-acetyl-L-cystein-S-
yl)butane-2,3-diol; NC1, 1,4-bis(N-acetyl-L-cystein-S-yl)-2-butanone; NAC, N-acetyl-L-cysteine; EB-GII, N7-[1-(hydroxymethyl)-2-propen-1-yl]guanine;
bis-N7G-BD, 1,4-bis(gua-7-yl)-2,3-butanediol. MHBMA1 and MHBMA2 are collectively called monohydroxybutenyl mercapturic acid (MHBMA), and
trans- and cis-MHBMA3 are similarly called MHBMA3.
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smokers. A recently published study on the general popu-
lation in Wuhan, China, reported a surprisingly low fre-
quency of detection at only 9.4% [152]. Similarly, another
study performed in China even failed to detect MHBMA3
in 100 urine samples from children aged 6-12 years [153].
A possible explanation for the surprising observations re-
ported in the two studies is that the authors used cis-
MHBMA3 as the reference standard and the LOD in the
latter study was somewhat high (3.13 ng/mL) [152, 153],
although in the studies of Alwis et al. [139] and other au-
thors [44, 63, 64, 140–148, 151], the configuration of the
MHBMA3 standard was not specified.
MHBMA3 is a sensitive BD biomarker. It can clearly

distinguish non-smokers from smokers. In fact, all
population-based studies consistently show that there
are statistically significant differences in the MHBMA3
concentrations between smokers and non-smokers [63,
64, 139–142, 149, 151]. Quitting smoking can be
reflected in the change in the MHBMA3 level; in a study
on over 1,100 adult exclusive daily cigarette smokers, a
dramatic reduction in the MHBMA3 level was observed
among those quitted tobacco use entirely [147]. The bio-
marker can also indicate exposure to ETS; in an investi-
gation on exposure of non-smokers to VOCs from
secondhand smoke, St. Helen et al. observed that the
MHBMA3 concentrations exhibited the greatest increase
(2.1-fold) from 0 to 8 h postexposure among 9 VOC bio-
markers [154]. In addition, MHBMA3 can even discrim-
inate between duel cigarette/e-cigarette users and
exclusive cigarette smokers [141]. Furthermore, the bio-
marker can distinguish among light, average, and heavy
smokers. In Wave 1 of the Population Assessment of
Tobacco and Health Study, the biomarker data of more
than 2,700 U.S. adult daily cigarette smokers were ana-
lyzed and it was observed that the concentrations of bio-
markers, including MHBMA3, consistently increased
with cigarettes smoked per day (CPD) [141]. In the
2011-2016 U.S. National Health and Nutrition Examin-
ation Survey, by examining the urinary BD biomarkers,
including MHBMA1, MHBMA2, MHBMA3, and
DHBMA, in 5,897 participants, Nieto et al. observed
clear dose-response relationships between the MHBMA3
or DHBMA concentrations and CPD [64]. Specifically,
compared to non-smokers, smoking 1-10, 11-20, and >
20 CPD was significantly associated with 475%, 849%,
and 1,143% higher MHBMA3 levels, respectively (all p <
0.0001). However, the corresponding increases for
DHBMA were only 32.8%, 44.2%, and 102%, respectively
[64]. In addition, another study showed that the increase
in number of days that the tobacco products were used
during the last five days was associated with increased
levels of MHBMA3 (p < 0.01) but not DHBMA [149].
Besides smokers and non-smokers, significant differences

in the MHBMA3 levels have also been observed among

different subpopulations, including those with different
gender, ethnic/racial group, and age, although the results
are not always consistent. For example, it has been discov-
ered that the MHBMA3 levels in female smokers were sig-
nificantly high than those in male smokers [64, 142, 149].
When comparing differences among different ethnic/racial
groups, the MHBMA3 levels in non-Hispanic white
smokers were observed to be higher than those in non-
Hispanic black ones [149]. Another study also found that
the MHBMA3 levels in non-Hispanic white were signifi-
cantly higher than those in non-Hispanic black and His-
panic [142]. However, the differences failed to be observed
in a recently published study [64].
The differences among subpopulations with different

ages were consistently observed by three groups of au-
thors. Jain reported that there was a statistically signifi-
cant positive association between the MHBMA3 level
and age [149], and specifically, children aged 6-11 years
old had significantly higher MHBMA3 level compared
to non-smoker adults aged ≥ 20 years [150]. De Jesus
et al. found that after controlling for tobacco use and
other cofactors and using participants’ age of 25–34
years as the reference, young adults (18-24 years) had
significantly lower MHBMA3 levels, but older adults (≥
55 years) had significantly higher levels (all p ≤ 0.0001)
[142]. Similar results were also obtained in a recent
study reported by Nieto et al., although in this study, age
was categorized into somewhat different ranges from the
preceding study. In this study, Nieto et al. reported that
the MHBMA3 concentrations in older adults (aged 40-
59 and ≥ 60 years) were significantly higher compared to
those in younger adults (aged 20-39 years) [64]. Among
all participants (n = 5,897) and the participants who did
not use tobacco products (n = 5,171), with the exception
of adolescents (aged 12-19 years), all age groups, includ-
ing children (aged 3-5 and 6-11 years), had higher
MHBMA3 levels compared with young adults (aged 20–
39 years) [64], which is consistent with the observation
reported by Jain [150].
A major issue concerning MHBMA3 is that its config-

uration is not specified in all studies except for two re-
cent ones [152, 153]. This compound has two
configurations or two stereoisomers, i.e., trans- and cis-
MHBMA3 (Fig. 2), which should be well separated chro-
matographically. Unlike MHBMA, which is the mixture
of MHBMA1 and MHBMA2 and is usually used as a
single biomarker in most studies, the researchers in
MHBMA3-related studies did not describe that this
compound was a mixture of two stereoisomers. More-
over, the MHBMA3 standards available commercially
are either trans- or cis-isomer. Therefore, MHBMA3 de-
tected in human urine should be one of the two stereo-
isomers rather than the mixture of the two
stereoisomers. It has not been clear whether the

Chen and Zhang Genes and Environment            (2022) 44:3 Page 9 of 22



difference in the frequency of detection of MHBMA3
between the studies of Qian et al. or Kuang et al. [152,
153] and those reported by other authors [44, 63, 64,
139–148, 151] is caused by the configuration of the
biomarker.

THBMA
THBMA was tentatively identified first in urine of mice
exposed to BD [155] and was confirmed later by using
animals exposed to 14C-labeled BD [128]. Interestingly,
the metabolite was not detected in urine of rats and
mice administered 14C-labled EB [127]. In 2000, van Sit-
tert et al. tried to detect THBMA in human urine but
the attempt was unsuccessful due to interferences from
the sample matrix [124]. Until 2011, the Tretyakova la-
boratory was able to develop an LC-MS/MS method to
detect the metabolite in human urine, whose concentra-
tions in smokers and non-smokers were reported to be
21.6 and 13.7 ng/mg creatinine with the difference being
statistically significant (p < 0.01), respectively. Further-
more, the THBMA concentrations in urine declined 25-
50% following smoking cessation [129]. The biomarker
was also detected in urine of workers occupationally ex-
posed to BD with the mean concentration being 157 ng/
mg creatinine [113]. A subsequent study on workers in
Czech Republic observed statistically significant differ-
ences not only between exposed workers and the con-
trol, but also between the male control and the female
control. The MHBMA concentrations in the male con-
trol were significantly higher than those in the female
control (57.1 ± 33.5 vs. 24.2 ± 16.6 ng/mL, respectively)
even though both control groups were exposed to the
same ambient BD levels (7 ± 5 μg/m3) [135].

bis-BDMA
Bis-BDMA was first synthesized in 2014 by the Tretya-
kova group and was used as a biomarker [113]. In rat
urine following exposure to 200 ppm (442 mg/m3) BD
for two weeks, the mean bis-BDMA concentration was
4.8 ± 2.9 μg/mL, which was 16-, 44-, and 31-fold lower
than those of MHBMA, DHBMA, and THBMA, respect-
ively. However, this biomarker was not detected in urine
of smokers and workers occupationally exposed to BD
[113]. In urine of mice exposed to 590 ppm (1,300 mg/
m3) BD for two weeks, the bis-BDMA concentration was
8.09 ± 6.3 μg/mL [131].

NC1
NC1 is the urinary biomarker of CHB, the potential BD
metabolite formed via the alternative MPO pathway. It
was first synthesized in 2017 [111, 156] and subse-
quently was detected in urine of CHB-administered rats
and mice [104]. Whether the biomarker can be detected

in urine of animals and humans exposed to BD has not
been reported.

EB-GII
EB reacts with the guanine residues in DNA at the N7-
position to form two products, N7-(2-hydroxy-3-buten-
1-yl) guanine (EB-GI) and EB-GII [157]. The two ad-
ducts have been detected in EB-treated cells in culture,
and in tissues of rats and mice exposed to BD [157], and
EB-GII has been found in human blood leukocyte DNA
of smokers but below the LOD [158]. In 2017, the Tre-
tyakova laboratory developed a highly sensitive LC-MS/
MS method and was able to detect EB-GII in urine of
smokers and occupationally-exposed workers [130]. The
biomarker was successfully used in studies concerning
humans and animals [159–161].

bis-N7G-BD
Bis-N7G-BD was first synthesized through the reaction
of DEB with guanosine [92]. The adduct can be detected
in tissues of rats and mice exposed to BD [95]. Use of
bis-N7G-BD as a urinary biomarker was reported just
before the review is published [131]. In the study, very
low concentrations of bis-N7G-BD (~570 pg/mg creatin-
ine) were detected in urine of mice exposed to 590 ppm
(1,300 mg/m3) BD for two weeks [131].

Suitability of the urinary BD biomarkers for studies on the
general population
Urinary biomarkers are particularly useful in large epi-
demiological studies because urine is much more easily
available and has lower biohazard risks compared to
blood. However, it should be noted that urinary bio-
markers reflect recent exposures and are susceptible to
variations [134]. Because several urinary BD biomarkers
have been developed, a comparison of their performance
can help researchers make a wise selection, especially for
studies on the general population.
The urinary BD biomarkers reported can be divided

into two categories: exposure biomarkers and exposure/
effect biomarkers. The former includes all NAC conju-
gates and is surrogate biomarkers, because they only re-
flect the doses of internal exposure to BD or a specific
metabolite (e.g., DEB). On the other hand, the latter,
which includes EB-GII and bis-N7G-BD, is mechanistic-
ally relevant and cancer-related biomarkers, because the
formation of DNA adducts is considered to be the initial
molecular event in carcinogenesis.
First and foremost, selection of biomarkers is certainly

dependent on the purpose of research. However, in prac-
tical applications, the selection primarily depends what
subjects are used in research. Urine of laboratory ani-
mals exposed to BD usually contains high concentra-
tions of metabolites, thus all BD biomarkers can virtually
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be used. Conversely, urine of human subjects in the gen-
eral population is expected to contain very low concen-
trations of biomarkers, as a result, selection of
biomarkers is quite restricted. Because urinary BD bio-
markers are most useful in biomonitoring of human sub-
jects and for laboratory animals, hemoglobin and DNA
adducts can be freely selected as biomarkers, we will
thus focus on the issue what biomarkers are suitable for
studies on the general population.
Among the urinary BD biomarkers, MHBMA and bis-

BDMA can easily be excluded due to either very low fre-
quency of detection [64] or inability to be detected even
in urine of occupationally-exposed workers [113].
Among other biomarkers, DHBMA, THBMA, and EB-
GII have natural background that may be caused by en-
dogenous sources, thus restricting their sensitivity [113,
124, 130, 133]. Specifically, DHBMA fails to reflect the
changes in the external exposure doses in some studies
[137, 162]; in particular, a study found that the DHBMA
levels did not change after cessation of smoking, whereas
the levels of MHBMA and the biomarkers of other
VOCs rapidly decreased [137]. The difference in the
THBMA concentrations between smokers and non-
smokers is small (the data of smokers is only 58% higher
than that of non-smokers), although it is statistically sig-
nificant (p < 0.01) [129]. EB-GII is even worse; its con-
centrations in urine of smokers had no statistically
significant difference from those in non-smokers [130].
However, the levels of these biomarkers exhibited sig-
nificant differences between occupationally exposed
workers and the controls, suggesting that they may be
suitable for human subjects with high BD exposure.
Among these biomarkers, MHBMA3 stands out from

the rest. Many studies already demonstrate its excellent
suitability for biomonitoring exposure of the general
populations to ambient BD [44, 63, 64, 140–153]. It is
highly responsive to the exposure dose [64] and is well
capable of reflecting exposure to ETS [154]. Compared
with DHBMA, MHBMA3 exhibits stronger correlation
with the serum level of cotinine, the well-known bio-
marker for smoking [139]. In addition, the MHBMA3
levels also show significant differences among a variety
of subpopulations [64, 142, 149]. Clearly, MHBMA3 is
the best urinary biomarker for biomonitoring BD expos-
ure in the general population.

Genotoxicity of BD in humans
Genotoxicity of BD in humans, as assessed in many mo-
lecular epidemiology studies, has been thoroughly
reviewed in 2010 by Albertini et al. [7]. After that, only
five studies, which were performed by two groups of
Chinese researchers, have been published. Therefore, we
will only provide a brief update on the issue.

The Xia group in the School of Public Health of Fudan
University used the cytokinesis-block micronucleus
(CBMN) assay to examine chromosomal damage in per-
ipheral blood lymphocytes (PBL) of 166 workers in a poly-
butadiene latex chemical industrial plant in Ningbo, China
[163]. These workers were exposed to extremely high
levels of BD with the range varying from 0.05 to 1,985.99
mg/m3 (the median was 4.48 mg/m3). The mean MN fre-
quency of the workers was significantly higher than that
of the unexposed control (0.339% vs. 0.148%, p < 0.01),
and the polymorphisms of several genes involved in bioac-
tivation and detoxification of BD were observed to influ-
ence the MN frequency [163]. In another study, the Xia
group used sister-chromatid exchange (SCE) and CBMN
assays to investigate chromosomal damage in PBL of 44
BD-exposed workers in a rubber factory of Shandong,
China [164]. These workers were exposed to much lower
levels of BD (0.06-12.41 mg/m3 with the median being
1.48 mg/m3) compared with those in Ningbo, China. It
was found that the mean MN frequency in the workers
was significantly higher than that in the control without
occupational exposure to BD (0.439% vs. 0.296%, p <
0.01), but the SCE frequency did not exhibit statistically
significant difference between the exposed workers and
the control. In addition, it was also observed that the poly-
morphisms of three glutathione S-transferase genes af-
fected the MN frequency [164].
The other group of Chinese researchers, the Cao and

Ao group in the Department of Hygiene Toxicology of
the Third Military Medical University, Chongqing,
China, conducted a 1:1 matched pair study in a popula-
tion of workers in a large petrochemical facility in Nan-
jing, China [165–167]. The workers were exposed to
significantly higher levels of BD than did the control
(5.02 vs. 1.86 mg/m3, p < 0.01), and exhibited elevated
frequency of MN and nucleoplasmic bridge (NPB) (both
p < 0.01) but lower nuclear division index (p < 0.01) in
comparison to the control [165]. The polymorphisms of
some metabolism- and DNA repair-related genes, and a
folate metabolism-related gene were observed to affect
the NPB and nuclear bud frequency [165–167].
Additionally, it is noted that a study performed in Italy

observed a statistically significant increase in the MN
frequency of exfoliated buccal cells in petroleum refinery
workers and also residents living in areas close to the
petroleum refinery industry [168]. However, the cohort
was small (n = 50) and the BD concentrations were not
measured.
In summary, these studies indicate that BD at levels of

occupational exposure is genotoxic to humans and can
cause chromosome damage as assessed by the CBMN
assay. However, a vast majority of studies published be-
fore 2010 have failed to observe genotoxicity of BD in
humans [7]. It seems to be an issue of selection of assays
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and endpoints, because the previous studies examined
the mutations of the hypoxanthine-guanine phosphori-
bosyltransferase (HPRT) gene, and induction of chromo-
some aberrations and SCE [7]. Thus, the CBMN assay
appears to be the technique of choice to detect genotoxi-
city of BD in humans. Chromosome damage detected
with the assay may be used as an effect biomarker to as-
sess cancer risk induced by BD [169].

Associations between BD exposure and diseases
Exposure to BD has been associated with a variety of
diseases. First and foremost, as a human carcinogen, oc-
cupational exposure to BD has been causally associated
with lymphohematopoietic cancers, especially leukemia
[1, 2, 4]. With regard to specific forms of leukemia, the
epidemiological studies of a cohort of synthetic rubber
industry workers at six North American plants support
an association between BD exposure and lymphoid
leukemia, but not myeloid leukemia, non-Hodgkin’s
lymphoma, and multiple myeloma [170–173].
BD exposure has also been associated with diseases

other than lymphohematopoietic cancers, including car-
diovascular disease (CVD), reproductive effects, child-
hood leukemia, etc. It is worth noting that children may
be one of the subpopulations with greater susceptibility
to the toxic effects of BD than the general population; in
fact, most epidemiological studies over the last decade
have been conducted on children. Thus, the studies of
the adverse effects of BD on children’s health will be dis-
cussed in a separate section.

CVD
The association between BD exposure and CVD was first
noticed in 1990. Interestingly, the association was ob-
served only in a specific subpopulation, i.e., black male.
In a study to investigate the mortality among workers at
a BD facility, Divine reported a significantly elevated
standardized mortality ratio (SMR) in non-white males
for all causes of death, including arteriosclerotic heart
disease [174]. The data from another study to investigate
12,110 male workers in eight styrene-BD polymer manu-
facturing plants indicated a significant excess SMR for
arteriosclerotic heart disease (SMR = 1.48) in black
workers than in the general population [175]. In 1996,
Divine and Hartman reported updated data and similarly
found that, in the cohort of 2,795 male workers at a BD
facility, the non-white workers showed a statistically sig-
nificant elevated SMR for all causes of death, including
arteriosclerotic heart disease (SMR = 1.42) [176]. In a
cross-sectional study, Shin et al. observed that BD-
related VOCs decreased diastolic blood pressure but in-
creased heart rate and brachial artery diameter, suggest-
ing that BD and other VOCs may have rapid impacts on
the human cardiovascular system [177]. In this study,

more than half of 63 participants were black people (n =
35, 55.6%) [177].
The observation that BD exposure was associated with

CVD in black male was echoed by a newly published
study, in which the urinary levels of DHBMA were ob-
served to exhibit strong associations with the urinary
levels of norepinephrine and normetanephrine (two
CVD risk markers) in black participants of a cohort of
346 non-smokers [148]. The result suggested that expos-
ure to BD was associated with endothelial dysfunction
and may contribute to elevated risk of hypertension in
people with increased sympathetic tone, particularly in
black individuals [148].
Lin et al. recently reported a positive correlation be-

tween the urinary DHBMA levels and the CVD risk fac-
tors, including carotid intima-media thickness, endothelial
microparticles, and platelet microparticles [178]. However,
the study was conducted in young Taiwanese.
The association between BD exposure and CVD is

supported by animal experiments [179, 180]. Crotonal-
dehyde, a minor BD metabolite, might play a role in the
etiology [181].

Reproductive effects
BD has been considered to have reproductive and devel-
opmental effects [182]. However, so far the effects have
been observed dominantly in rodents; these effects include
reduced fetal weight, fetal death, ovarian atrophy, and tes-
ticular atrophy, and the most sensitive endpoints are ovar-
ian atrophy in female mice and testicular atrophy in male
mice [1, 183]. DEB may be the critical metabolite to in-
duce the reproductive effects [1, 182]; Dong et al. reported
that DEB caused the proliferation inhibition and marked
cell cycle arrest at the G2 phase but not apoptosis in
mouse spermatocyte-derived GC-2 cells [86].
The studies of the reproductive effects of BD on humans

have been extremely scarce. The data from an earlier
study on Czech female workers exposed to BD showed no
difference in pregnancy outcomes (e.g., miscarriage, still
birth, ectopic pregnancies) between exposed subjects and
controls. However, the numbers of the subjects and con-
trols in this study are small (n = 23 and 26, respectively)
[184]. In a recently published study conducted in Portland,
Oregon, U.S., Willis and Hystad used vital statistics re-
cords from 2000 to 2014 (n = 279,051 births) to assess
prenatal exposure to 19 air pollutants. They observed as-
sociations in fully adjusted models comparing the highest
to lowest quintiles of exposure for certain pollutants, in-
cluding the associations between BD and term birth
weight [−16.86 g; 95% confidence interval (CI) = −29.66-
−4.06; p < 0.05], and between BD and small for gestational
age [odds ratio (OR) = 1.18; 95% CI = 1.07-1.30; p < 0.05]
[185]. Another recent study indicated that there might be
a potential association between BD exposure and male
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infertility. Poli et al. reported that the urinary DHBMA
levels were negatively correlated with sperm count and
sperm abnormal forms, and oxidative stress on the male
reproductive tract may play an important role [186].

Adverse effects on pulmonary functions
Occupational exposure to high concentrations of BD
may have adverse effects on pulmonary functions, in-
cluding vital capacity, forced vital capacity, forced ex-
piratory volume in the first second, and peak expiratory
flow. An investigation on workers in a petrochemical
plant in Iran found that compared to the control, the
workers had considerably higher prevalence rates of
cough, phlegm, wheezing, shortness of breath, chest
tightness, and episodes of chest illness associated with
cold. Furthermore, their pulmonary functions were also
lower in comparison with the control and the differences
were statistically significant (p < 0.05) [187]. However, it
should be noted that the workers were exposed to high
BD concentrations (the average concentration reached
560.82 μg/m3), although the BD levels are still below the
threshold recommended by the American Conference of
Governmental Industrial Hygienists [187].

Associations between BD exposure and diseases in a
specific subpopulation - children
Most epidemiological studies over the last decade to in-
vestigate the associations between BD exposure and dis-
eases were conducted in children. Exposure to BD has
been reported to show associations with several childhood
diseases, including childhood leukemia, brain tumors, aut-
ism, asthma, etc. The studies are discussed below.

Childhood leukemia
Childhood leukemia accounts for approximately 30% of
all childhood cancers in the United States, and a signifi-
cant increase in the incidence has been observed in Eur-
ope and in other developed countries over the past 30
years [119]. In the meantime, the etiology of childhood
leukemia remains poorly understood and few established
risk factors have been identified. Over the last 20 years,
there has been increasing focus on environmental pollut-
ants, especially, the traffic-related pollutants [188–192].
As a traffic-related air pollutant and a known human
carcinogen that has causally been associated with
leukemia, BD has naturally received much attention in
the investigations for the etiology of childhood leukemia.
The association between childhood cancers, including

childhood leukemia, and exposure to a variety of air pol-
lutants (CO, NOx, VOCs, dioxins, etc.) was first reported
by Knox in two successional studies, in which elevated
risks of childhood cancers were observed among chil-
dren whose residence was near a “hot spot” of benzene
or BD emissions [193, 194]. Although some increased

risks could be attributable to mutual confounding, BD
was found to be a powerful independent predictor [194].
For the first time, BD was identified as a specific hazard
for childhood cancers, although in these studies, child-
hood leukemia was not singled out [193].
The finding was reinforced by subsequent studies. In

an ecologic study in Texas, U.S., Whitworth et al. inves-
tigated 977 cases of childhood lymphohematopoietic
cancer diagnosed from 1995-2004. The researchers ex-
amined whether the census tracts with the highest esti-
mated levels of benzene and BD had higher incidence
rates of childhood lymphohematopoietic cancer com-
pared with the census tracts with the lowest estimated
levels. Indeed, among the census tracts with the highest
BD levels, they observed significantly higher rates of all
leukemia [rate ratio (RR) = 1.40; 95% CI = 1.07-1.81],
and elevated rates of the two most common types of
childhood leukemia, acute myeloid leukemia (AML) (RR
= 1.68; 95% CI = 0.84-3.35) and acute lymphocytic
leukemia (ALL) (RR = 1.32; 95% CI = 0.98-1.77), but the
data for AML and ALL were not statistically significant
[195]. The same laboratory further investigated whether
in utero and early life exposure to BD and other pollut-
ants was associated with childhood leukemia, and indeed
observed positive associations between exposure to BD
and childhood leukemia (under the age of 5) in either
single or co-pollutant models [196]. In another investiga-
tion conducted in California, U.S., Heck et al. found that
in infancy, AML was positively associated with exposure
to BD (OR = 2.35; 95% CI = 1.02-5.39), o-xylene (OR =
1.88; 95% CI = 1.02-3.45), and toluene (OR = 2.02; 95%
CI = 1.03-3.94) [197].

Childhood brain tumors
The association between exposure to BD and childhood
brain tumors has also been reported. Danysh et al. con-
ducted a population-based study in Texas, U.S., and ob-
served that the census tracts with medium and medium-
high BD concentrations had higher astrocytoma inci-
dence rates (RR = 1.46; 95% CI = 1.05-2.01 and RR =
1.69; 95% CI = 1.22-2.33, respectively) compared with
low concentrations. Increased concentrations of BD and
benzene were observed to be strongly associated with in-
creased primitive neuroectodermal tumor (PNET) inci-
dence rates, but the associations were not statistically
significant [198]. In a subsequent study, the group evalu-
ated the influence of residential mobility on the expos-
ure assignment and concluded that residential mobility
of children did not significantly impact the exposure as-
signment of BD [199]. In another study in California,
U.S., von Ehrenstein et al. found that central nervous
system PNETs were positively associated with interquar-
tile range (IQR) increases in prenatal exposure to acetal-
dehyde (OR = 2.30; 95% CI = 1.44-3.67), BD (OR = 2.23;
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95% CI = 1.28-3.88), benzene, and toluene; and also with
IQR increases in exposure during the first year of life to
o-dichlorobenzene (OR = 3.27; 95% CI = 1.17-9.14), BD
(OR = 3.15; 95% CI = 1.57-6.32), and benzene. The au-
thors concluded that in utero and infancy exposures to
air toxics generated by industrial and road traffic sources
may increase the risk of PNETs and medulloblastoma,
with limited support for increased risks for astrocytoma
in children up to age 6 [200].

Other childhood tumors
Besides childhood leukemia and brain tumors, BD ex-
posure has also been found to be potentially associated
with other childhood cancers. Heck et al. examined am-
bient exposure to 27 air toxics in the perinatal period in
relation to retinoblastoma development with the disease
diagnosed during 1990-2007 in California, U.S. They ob-
served that retinoblastoma risk increased with pregnancy
exposure to benzene (OR = 1.67; 95% CI = 1.06-2.64)
and other six toxics that primarily arise from gasoline
and diesel combustion and are highly correlated, includ-
ing BD (OR = 1.59; 95% CI = 1.08-2.35) [201]. Prenatal
exposure to air toxics, including BD, was also observed
to be positively associated with malignant germ cell tu-
mors (GCTs) in young children [202]. In a case-control
study, Hall et al. identified 243 GCT cases, which were
matched by birth year to cancer-free population controls
(n = 147,100) from 1984 to 2013 in California, U.S. They
observed that prenatal exposure to traffic-related air
toxics during the second trimester increased GCT risk,
particularly BD (OR = 1.51; 95% CI = 1.01-2.26) and m-/
p-xylene (OR = 1.56; 95% CI = 1.10-2.21). A further ana-
lysis by subtype indicated elevated ORs for yolk sac tu-
mors but no teratomas [202].

Childhood autism
The etiology of autism is heterogeneous and little is
known about its nongenetic causes, but environmental
factors have been suggested as major contributors. It has
been reported that in utero BD exposure is associated
with childhood autism [203]. In a population study, von
Ehrenstein et al. identified 768 cases of autism from
148,722 children in Los Angeles County, California, U.S.,
during 1998-2009. They found that autism risks in-
creased per interquartile range increase in average con-
centrations during pregnancy of several correlated toxics
mostly loading on 1 factor, including BD (OR = 1.59;
95% CI = 1.18-2.15), m-/p-xylene (OR = 1.51; 95% CI =
1.26-1.82), and other pollutants, adjusting for maternal
age, ethnicity/race nativity, education, insurance type,
parity, child sex, and birth year [203].

Childhood asthma
In a recently published article, Kuang et al. compared
the differences in several biomarker levels between asth-
matic and healthy children. DHBMA was used as the
biomarker of BD. The results indicated that the urinary
levels of DHBMA and biomarkers of other pollutants
were significantly associated with asthma (for DHBMA,
OR = 2.76; 95% CI = 1.73-4.43). Oxidative stress may
play an important role, because these biomarkers exhib-
ited strong correlations with 8-hydroxy-2′-deoxyguano-
sine levels, which were significantly higher in asthmatic
children than those in healthy children [204].

The role of BD in smoking-associated diseases
Tobacco smoke contains over 6,000 compounds, of
which more than 70 compounds have been classified as
human carcinogens [205–207]. BD is one of the carcino-
gens with the largest amounts in mainstream smoke; its
typical yield is 52 μg/cigarette, which is more than 400-
fold higher than 4-(methylnitrosamino)-1-(3-pyridyl)-1-
butanone (NNK), a strong tobacco-specific carcinogen
[208]. In terms of cancer risk, BD has been ranked as
the most carcinogenic compound in cigarette smoke
among 40 carcinogens with cancer potency factors being
available [209].
Tobacco smoking has been associated with an array of

diseases, including many types of cancers (e.g., lung can-
cer, liver cancer, bladder cancer, and leukemia), diabetes
mellitus, CVD, asthma, etc. [210]. In spite of the ranking
of BD as the top carcinogen in cigarette smoke, the con-
tribution of BD in tobacco smoking-associated diseases,
in particular, cancers, has not been elucidated.
BD is listed as a likely but minor causative agent for

cigarette smoke-related lung and larynx cancers, mostly
based on its tumorigenesis in mice [205, 208, 211]. How-
ever, the latest epidemiological study on more than
20,000 workers employed at eight North American syn-
thetic rubber polymer plants from 1943 through 2009,
which is the largest cohort for occupational exposure to
BD, found that there was no causal association between
BD exposure and lung cancer [212]. This study and the
authors’ earlier investigations indeed observed elevated
rates of lung cancer among female workers, however,
the authors thought that it may be caused by other fac-
tors rather than exposure to BD due to the lack of a
positive exposure-response trend [172, 213–215]. The
observation also obtains support from other independent
studies, including an investigation on the relationships
between several carcinogens in cigarette smoke and lung
cancer in a Chinese cohort [216], an ecological study at
the country level conducted in the United States [217],
and an investigation on cancer incidence in a petro-
chemical industry area in Sweden [218]. Moreover, in a
U.S. study to compare the BD metabolism in smokers in
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three ethnic/racial groups (Native Hawaiians, whites,
and Japanese Americans), Park et al. found that the
MHBMA levels in Native Hawaiian smokers were sig-
nificantly lower compared to those in white smokers,
suggesting that Native Hawaiian smokers had lower BD
uptake rates or metabolized BD to EB and then
MHBMA less efficiently than whites [219]. However, it
has been established that for the same lifetime smoking
exposure, Native Hawaiian smokers have a significantly
greater risk of lung cancer than do whites [220]. Thus,
the finding of Park et al. actually provides indirect sup-
port for the epidemiological observation that BD expos-
ure has no causal association with lung cancer.
Collectively, the studies suggest that BD is not a human
lung carcinogen and thus is not expected to contribute
to smoking-associated lung cancer.
In spite of the fact that BD is listed as a minor contrib-

uting agent for larynx cancer [205], in fact, the studies
concerning BD exposure and larynx cancer have been
very scarce. A few studies to investigate the mortality in
workers from the styrene-BD rubber industry and the
BD production industry found that certain subgroups of
workers had more than expected deaths from larynx
cancer [175, 176, 215]. However, the results were all
based on small numbers and thus were statistically im-
precise. Moreover, the excess in larynx cancer was not
clearly associated with any process group, suggesting
that the increases were not due to BD exposure [215]. It
should be noted that a positive association has indeed
been observed between occupational exposures in the
rubber-manufacturing industry and larynx cancer [4].
However, the observation is unable to relate the develop-
ment of larynx cancer to exposure to specific chemicals
because the rubber-manufacturing industry uses a wide
variety of substances. In addition, a review of literature
on the contribution of various types of occupational ex-
posure to rare cancers does not list BD as a possible
contributor to larynx cancer [221].
Because cigarette smoke is a known risk factor for

urothelial carcinoma, a recent case-control study investi-
gated the relationships among smoking, urinary levels of
several VOC biomarkers, and urothelial carcinoma risk.
However, no association between the levels of
MHBMA3 or DHBMA and the risk of urothelial carcin-
oma has been discovered [144].
Taken together, it appears that BD may not contribute

to pathogenesis of cigarette smoking-associated cancers
of lung and larynx. Because BD has been associated with
leukemia and some types of childhood tumors, and non-
carcinogenic effects such as CVD and asthma, it is likely
that BD is involved in these diseases caused by smoking.
However, to our knowledge, so far no studies to investi-
gate the associations have been published.

Discussion and perspective
The studies of BD over the last decade have brought
some important developments, among which the adverse
effects on children’s health are probably the most pro-
found issue. However, more carefully-designed studies
are needed to provide further evidence for these
findings.
In epidemiological studies, it is a critical issue to deter-

mine human exposure to BD. Currently, most epidemio-
logical studies estimated human exposure to BD based
on its concentrations in the ambient air. However, the
approach can cause great uncertainties for studies con-
ducted in the general population. As pointed out by
Fujita et al., estimates of population exposure to air pol-
lutants extrapolated from ambient measurements at am-
bient fixed site monitors are prone to uncertainty [48].
Multiple studies have indicated that microenvironments,
especially those at home, are the main determinant of
human exposure and the BD concentrations in microen-
vironments are often unrelated to those in the ambient
air. Moreover, several population studies has consistently
demonstrated that with regard to human exposure to
BD, ETS is the primary source in the general population.
Therefore, for epidemiological studies on the general
population, a reliable estimate of human exposure to BD
is desirable. Currently, the best approach can be using
the urinary levels of BD biomarkers (preferably
MHBMA3) as the metric for assessing human exposure,
although it should be kept in mind that the urinary bio-
markers reflect only recent exposures.
The finding that BD has natural sources from trees

and soil bacteria is intriguing. However, so far only two
tree species and a strain of soil bacterium have been re-
ported to release BD. Thus, it is worth further explor-
ation whether other species of plants and bacteria can
also generate BD. If the quantities generated by plants
are large enough, it may have an impact on human ex-
posure to BD and it is also likely that BD can play a role
in atmosphere chemistry.
Because BD must undergo bioactivation to exert its

toxic effects, including mutagenicity/carcinogenicity, ob-
viously identifying the specific BD metabolite(s) that
dominantly contribute to the toxic effects, particularly in
humans, is at the core of the underlying molecular
mechanisms of BD toxicity. However, so far the issue
has not been addressed, largely because the metabolism
of BD is quite complex and more than 10 potential me-
tabolites, most of which are genotoxic, can be formed [1,
101, 102]. Making matters worse, each of the major me-
tabolites, e.g., EB, DEB, EBD, and CHB, contains stereo-
isomers due to the presence of chiral carbon atoms in
these molecules, and importantly, the stereoisomers can
have different bioactivity (e.g., cytotoxicity and mutage-
nicity) [6, 7, 94, 99]. In addition, the metabolism of BD
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has great species difference [1, 6, 7], leading to extra dif-
ficulty for studies on humans. Nonetheless, addressing
the issue should be a major research direction for future
studies.
Currently, it is generally assumed that mutagenicity/

carcinogenicity of BD is caused by the epoxide metabo-
lites formed via the P450-mediated metabolism. Interest-
ingly, all epidemiological studies that have been
published so far have not discovered any associations be-
tween BD exposure and cancers of lung, liver, and kid-
ney, the major organs that are responsible for uptake
and biotransformation of BD. Counterintuitively, the tar-
get organ for BD carcinogenicity in humans is the lym-
phohematopoietic system, an organ that seems not to be
involved in the formation of P450-mediated epoxides.
Why BD is not carcinogenic in the major human organs
for uptake and metabolism is an intriguing issue. While
extrahepatic toxicity is a likely explanation, the MPO-
mediated metabolic pathway seems to provide an at-
tractive alternate because the pathway is expected to
occur exactly in the lymphohematopoietic system. Ad-
dressing the issue is an important research direction be-
cause it concerns the molecular mechanisms of BD
mutagenicity/carcinogenicity and can have significant
impact on the risk assessment of BD.
Although having been studied for 40 years, our under-

standing of the molecular mechanisms of BD toxicity
has still been limited. Besides the associations with dis-
eases that have been discovered, it is likely that BD con-
tributes to other adverse effects on human health or the
etiology of other diseases, in particular, as a factor to
promote disease progression rather than as a disease-
initiating factor. Considering that BD is a ubiquitous
pollutant, the direction deserves more attention.

Conclusions
BD is a ubiquitous environmental mutagen/carcinogen
with high cancer risk. Its major environmental sources
include automobile exhaust and tobacco smoke. The
studies over the last decade have shown that microenvi-
ronments, particularly indoor microenvironments, are
the primary determinant of exposure of the general
population to BD, with tobacco smoke being the main
source. While it has been known for more than 20 years
that occupational exposure to BD is associated with
leukemia and CVD, recent progress shows that non-
occupational exposure to BD may be associated with
certain reproductive effects, and more importantly, with
several childhood cancers, autism, and asthma. The ad-
verse effects on children’s health need special attention
and more studies.
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