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Abstract 

Background Primary aromatic amines (PAAs) present significant challenges in the prediction of mutagenicity using 
current standard quantitative structure activity relationship (QSAR) systems, which are knowledge‑based and sta‑
tistics‑based, because of their low positive prediction values (PPVs). Previous studies have suggested that PAAs are 
metabolized into genotoxic nitrenium ions. Moreover, ddE, a relative‑energy based index derived from quantum 
chemistry calculations that measures the stability nitrenium ions, has been correlated with mutagenicity. This study 
aims to further examine the ability of the ddE‑based approach in improving QSAR mutagenicity predictions for PAAs 
and to develop a refined method to decrease false positive predictions.

Results Information on 1,177 PAAs was collected, of which 420 were from public databases and 757 were from in‑
house databases across 16 laboratories. The total dataset included 465 Ames test‑positive and 712 test‑negative 
chemicals. For internal PAAs, detailed Ames test data were scrutinized and final decisions were made using com‑
mon evaluation criteria. In this study, ddE calculations were performed using a convenient and consistent proto‑
col. An optimal ddE cutoff value of ‑5 kcal/mol, combined with a molecular weight ≤ 500 and ortho substitution 
groups yielded well‑balanced prediction scores: sensitivity of 72.0%, specificity of 75.9%, PPV of 65.6%, negative 
predictive value of 80.9% and a balanced accuracy of 74.0%. The PPV of the ddE‑based approach was greatly 
reduced by the presence of two ortho substituent groups of ethyl or larger, as because almost all of them were 
negative in the Ames test regardless of their ddE values, probably due to steric hindrance affecting interactions 
between the PAA and metabolic enzymes. The great majority of the PAAs whose molecular weights were greater 
than 500 were also negative in Ames test, despite ddE predictions indicating positive mutagenicity.
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Conclusions This study proposes a refined approach to enhance the accuracy of QSAR mutagenicity predictions 
for PAAs by minimizing false positives. This integrative approach incorporating molecular weight, ortho substitu‑
tion patterns, and ddE values, substantially can provide a more reliable basis for evaluating the genotoxic potential 
of PAAs.

Keywords Primary aromatic amine, QSAR, Mutagenicity, Nitrenium ion, Stability, Quantum chemistry, False positive, 
ICH M7

Introduction
Primary aromatic amines (PAAs) are important materi-
als, reagents, or intermediates involved in the synthesis 
of various chemical products and are key substructures 
in many chemicals used in daily life. Because some PAAs 
are genotoxic carcinogens [1], it is critical to conduct risk 
assessments for PAA-containing products that come in 
contact with humans. Notably, the migration of PAAs 
from food packaging materials and kitchenware has been 
identified as a major source of human exposure [2–6]. 
Regulations set by the European Union mandates that the 
release of PAAs in food should not exceed 2 μg/kg, which 
corresponds to the practical detection limit [7]. Addi-
tionally, pharmaceutical impurities are another potential 
source of human PAA exposure. The International Coun-
cil for Harmonization of Technical Requirements for 
Pharmaceuticals for Human Use (ICH) established the 
M7 guideline, which calls for a quantitative structure–
activity relationship (QSAR) assessment of DNA reactive 
(mutagenic) impurities in pharmaceuticals to minimize 
potential carcinogenic risk [8] using knowledge-based 
and statistics-based systems. Because numerous prod-
ucts contain various types of PAAs, applying QSAR pre-
dictions to safety assessment is a realistic solution. The 
adoption of QSAR systems has been expanding in chemi-
cal regulatory environments outside of the pharmaceuti-
cal industry [9–11].

Despite great efforts [12–20] to improve QSAR pre-
dictions, PAAs remain a significant challenge for QSAR 
mutagenicity assessment. Widely used QSAR systems 
overestimate the mutagenicity of PAAs [21, 22]. Approxi-
mately half of PAAs identified as mutagenic by QSAR 
systems were empirically non-mutagenic in the Ames 
test, which is supported by a survey conducted by Patel 
et  al. [22]. They examined PAAs from a group of phar-
maceutical companies with three commonly-used QSAR 
tools. The positive prediction value (PPV) / negative 
prediction value (NPV) for each of the three QSAR tool 
was 36/81%, 49/83%, and 61/84%. This demonstrates that 
standard QSAR assessments result in considerably fre-
quent false positive calls. Like false negative predictions, 
false positive predictions can also misrepresent actual 
risk and, further, lead to practical drawbacks. These 
include delays in the launch of new drugs and increased 

purification costs, which ultimately raises drug prices and 
altogether disadvantages the patients. Improving the PPV 
of QSAR predictions is therefore not only a scientific pri-
ority but also a necessity for improving the cost-efficiency 
and speed of drug development.

Great efforts to predict mutagenicity and carcinogenic-
ity based on chemical structure have been ongoing since 
before the release of ICH M7 (reviewed in [23]). Various 
parameters, such as classical physicochemical properties, 
topological and geometric indices, and quantum chemi-
cal descriptors, have all been reported as useful. Bentzien 
et  al. [24] proposed a method for predicting the muta-
genicity of aromatic amines based on the stability (ddE 
values) of nitrenium ions derived from quantum mechan-
ics calculations. This approach is grounded in the nitre-
nium ion hypothesis [25], which posits that the stability 
of a transient nitrenium ions—enzymatically converted 
from an aromatic amines—is correlated with mutagen-
icity. Their examination of 257 PAAs indicated that this 
method could provide complementary information to 
enhance the predictivity of widely used QSAR tools like 
Derek Nexus (Lhasa ltd.), CASE Ultra (MultiCASE inc.) 
and Leadscope (Insteam). Furukawa et  al. [26] recently 
applied Bentzien’s method to 85 in-house PAAs, conveni-
ently utilizing MOE software for ddE calculations. Their 
findings showed a good correlation between ddE values 
and Ames test results, further validating the efficacy of 
this approach.

The aim of our study was to further evaluate the fea-
sibility of employing ddE-based local QSAR models for 
PAAs and to propose a refined approach to support the 
expert reviews of the outcomes of the current standard 
QSAR systems. In this study, we collected information on 
1,177 PAAs, reviewed the detailed Ames test results, and 
utilized Furukawa’s method to calculate ddE. We then 
compared these ddE values with the Ames test results 
and devised an approach for rectifying false positive pre-
dictions within existing QSAR flameworks.

Materials and methods
Ames test data collection for primary aromatic amines
Ames test data for PAA (Table  1) were collected from 
public databases, 15 pharmaceutical and chemical 



Page 3 of 10Muto et al. Genes and Environment           (2024) 46:24  

companies, and the National Institute of Health Sciences 
(NIHS). The Ames test data for in-house compounds 
had not been disclosed publicly. Because the detailed 
chemical structures for the many of the collected PAAs 
(mainly in-house compounds) were not available, data 
integrity was verified using the following acceptance cri-
teria. 1) Data were obtained using the standard Ames test 
method. Data from modified assays like mini-Ames tests 
or fluctuation Ames assays were excluded. 2) Ames tests 
were performed using at least two tester strains, Salmo-
nella typhimurium TA98 and TA100, both in the pres-
ence and absence of metabolic activation systems and 
within reasonable concentration ranges. 3) Duplication 
was eliminated by checking molecular weights and other 
chemical properties. 4) PAAs with additional structure 
alerts from common QSAR systems, beyond the aro-
matic amine alert, were excluded.

All Ames test data were meticulously reviewed by 
several authors to determine mutagenic activity using 
common evaluation criteria. The review process led to 
some revisions of the original Ames test conclusions; 
for example, some results were changed from negative 
to positive due to weak but reproducible dose-depend-
ent increases in the number of revertant colonies. The 
total dataset included 1,177 compounds that had reli-
able Ames test results. The working dataset composed of 
832 compounds was prepared by excluding compounds 
that had additional structure alerts other than aromatic 
amines, molecular weights greater than 500, ring-open-
ing remarks from ddE calculations, or two or more amine 
groups (Table 1).

ddE calculation for the stability of nitrenium ions
The ddE, an indicator of nitrenium ion stability, was cal-
culated by running a Scientific Vector Language (SVL) 
script for the Molecular Operating Environment (MOE) 
named "mut_nitre.svl" provided by MOLSIS Inc., in 
accordance with a previously described method, using 
MOE 2019.01 software (Chemical Computing Group 
ULC, Canada) [26]. We utilized the heat of formation 

energies of AM1-optimized structures calculated with 
MOPAC v7.1 in MOE 2019.01. To compute ddE, we cre-
ated a 3D structure of the molecule using MOE, washed 
the structure, performed conformational sampling with 
LowModeMD using MMFF94x force field, and optimized 
geometry using AM1 Hamiltonian. The most stable con-
former was used to determine the nitrenium ion species 
by replacing an amine hydrogen with a dummy atom X 
and re-optimizing the geometry with CHARGE = + 1. 
The lowest ddE value was recorded. Aniline’s ddE was 
set to 0 kcal/mol. If geometry optimization failed, a NaN 
(Not a Number) was assigned.

Analysis of prediction performance with ddE values
The prediction performance of various ddE cutoff val-
ues were assessed using several metrics: accuracy, sen-
sitivity, specificity, PPV, NPV, the Matthews correlation 
coefficient (MCC), and coverage, as previously described 
[27]. A receiver operating characteristic (ROC) curve 
was drawn using the roc_curve function in the sklearn 
package in Python 3.10.12 on Google Collaboratory, and 
Youden’s index was calculated using Microsoft Excel 
2021 to determine the optimal cutoff value [28].

The positive and negative likelihood ratio (LR + and 
LR-) of the ddE approach were calculated as previously 
described [29].

Results
Prediction performances on the total dataset
The results of the prediction performance analysis of the 
total dataset at various ddE cutoff values are shown in 
Table 2 (details are provided in the Supplementary data). 
The cutoff values increased stepwise from -10  kcal/mol 
to + 10 kcal/mol in increments of 2.5 kcal/mol. The bal-
anced accuracy increased to 71.6% at ddE = -5  kcal/mol 
when the MCC was 0.35. A cutoff value of ddE = 0 kcal/
mol gave the best MCC of 0.38 and a balanced accuracy 
of 69.8%.

Ring opening remarks in ddE calculations
Ring-opening remarks appeared in the ddE calculations 
for 53 compounds, two of which had structural alerts 
other than aromatic amines using the common QSAR 
system. An example of ring opening was shown in Fig. 1. 
When applying the -5 kcal/mol ddE cutoff to the 51 com-
pounds with only aromatic amine alerts, the number of 
true positives was 5/40, the number of false positives was 
35/40, the number of true negatives was 10/11, and the 
number of false negatives was 1/11 (Table 3).

Prediction performance of ddE values for compounds 
larger and smaller than a molecular weight (MW) of 500.

The ddE-based prediction in this study very fre-
quently generated false positive calls for large MW 

Table 1 Dataset of primary aromatic amines in this study

a Sum of public and internal compounds with reliable Ames test data
b Excluding the compounds with non-aromatic amine alerts, MW > 500, ring-
opening remarks, two or more amine groups

Information source Ames test result Total

Positive Negative

Total  dataseta 465 712 1177

Public database 249 171 420

In‑house 216 541 757

Working  datasetb 322 510 832
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PAAs. Of the 68 compounds with MWs > 500, 40 were 
predicted to be positive because their ddE values were 
less than -5 kcal/mol, whereas 36/40 of them were neg-
ative in the Ames test. Table 4 lists the 40 compounds 
with ddE < -5  kcal/mol and MWs > 500. Table  5 shows 
a comparison of the prediction results for ddE between 
PAAs with MWs > 500 and those with MWs ≤ 500 using 
a cutoff value of -5  kcal/mol ddE. For the MWs > 500 
PAA, the ddE approach resulted in very poor PPV of 
only 10%. For the MWs ≤ 500 PAA, the PPV was 66.9%. 

The ddE approach led to many false positive predic-
tions for large PAAs with MWs > 500.

Influence of ortho‑position substitution
As described in Table  5, the PAA with ddE values of 
less than -5  kcal/mol were classified based on their 
ortho-position substituents into four categories: Class 
1 includes PAA with  CH2CH3 or larger substituents 
at both ortho positions; Class 2 includes PAAs with 
 CH2CH3 or a larger substituent at one ortho position 

Table 2 Prediction performance with various ddE threshold for total dataset

a Percentage of ddE computable PAAs, of which 40.8% Ames positive

ddE cut‑off value (kcal/moll) 10 7.5 5 2.5 0 ‑2.5 ‑5 ‑7.5 ‑10

Sensitivity (%) 93.0 90.6 88.2 85.9 83.7 79.1 74.1 64.5 57.6

Specificity (%) 30.9 36.7 43.0 49.4 55.9 62.6 69.1 72.6 76.5

Positive prediction value (%) 48.1 49.7 51.6 53.9 56.7 59.4 62.3 61.8 62.8

Negative prediction value (%) 86.6 85.1 84.1 83.5 83.3 81.3 79.5 74.8 72.3

Accuracy (%) 56.3 58.7 61.4 64.3 67.2 69.4 71.1 69.3 68.8

Balanced accuracy (%) 62.0 63.7 65.6 67.6 69.8 70.9 71.6 68.5 67.0

Mathews correlation coefficient 0.34 0.35 0.36 0.37 0.38 0.37 0.35 0.29 0.26

Positive likelihood ratio 1.35 1.43 1.55 1.70 1.90 2.11 2.40 2.35 2.45

Negative likelihood ratio 0.23 0.26 0.27 0.29 0.29 0.33 0.37 0.49 0.55

Coveragea (%) 86.8

Fig. 1 Example of ring‑opening compound. Nitrenium ion becomes non‑aromatic form

Table 3 Ames test results and ddE of compounds with ring 
opening remarks

ddE value Ames test Total

Positive Negative

ddE value  ≤ ‑5 kcal/mol 5 35 40

 > ‑5 kcal/mol 1 10 11

Total 6 45 51

Table 4 Comparison of prediction performance of ddE 
approach between MW > 500 and ≤ 500

a Positive prediction value
b Negative prediction value

MW Ames ddE (cutoff ‑5 kcal/mol) Sum

 + ‑

 > 500  + 4 4 8 50.0% sensitivity

‑ 36 24 60 40.0% specificity

10.0%a 85.7%b 41.2% accuracy

 ≤ 500  + 305 104 409 74.6% sensitivity

‑ 151 394 545 72.3% specificity

66.9%a 79.1%b 73.3% accuracy
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with and without a smaller substituent at the other 
ortho position; Class 3 includes PAAs with one or two 
ortho substituents smaller than  CH2CH3; and Class 
4 includes PAAs with no ortho substituents. Positive 
calls from the ddE approach with a -5  kcal/mol cut-
off value resulted in 88.9% false positives for Class 1, 
55.0% for Class 2, 17.9% for Class 3, and 29% for Class 
4 (Table 5). These results indicate that large substitu-
tions at both ortho positions frequently caused false 
positives in ddE-based predictions.

ROC analysis with the working dataset
An ROC curve was drawn in Fig. 2 using the working 
dataset, which consisted of 832 PAAs derived from 
the total dataset by excluding compounds with non-
aromatic amine alerts, ring opening remarks,  CH2CH3 
or larger ortho substituents, or MWs > 500. The dis-
tance between the ROC curve and the left upper cor-
ner, which represents 100% true positives and 0% false 
positives, and Youden’s index at various ddE cutoff val-
ues are shown in Fig.  3. The distance below the bot-
tom line was 0.38 when the ddE cutoff values were 
between -1.87  kcal/mol and -5.64  kcal/mol, with the 
shortest distance having a cutoff value of -4.86  kcal/
mol. Youden’s index increased to 0.48 and plateaued 
when the cutoff values ranged from -2.75  kcal/mol 

to -5.64  kcal/mol, reaching its highest value at the 
-4.86 kcal/mol cutoff.

Prediction performances for 824 PAAs finally assessed 
by ddE values
Table 6 displays the performance metrics at various ddE 
cutoff values with 2.5  kcal/mol separation of 824 ddE 
computable PAAs that were MW ≤ 500 without two or 
more amine groups, non-PAA structure alert, two large 
ortho substituted groups, or ring opening system. Both 
balanced accuracy and overall accuracy were highest 
when the cutoff value was -5 kcal/mol. The MCC was the 
highest at the 0 kcal/mol cutoff value. Ames test results 
and ddE values were visualized in Fig. 4.

Discussion
The results of this study indicated that the ddE approach 
improved the reliability of positive QSAR predictions. 
In order to compare the results in this study and litera-
ture data, we calculated the likelihood ratios that are not 
affected by prevalences of datasets [29]. LR + is a meas-
ure how much more likely a positive test result is in 
patients with the disease compared to those without it. 
In this study, a higher LR + indicates a higher probabil-
ity that a query compound with positive prediction will 
test positive in the Ames test. A lower LR- indicates a 
higher probability that a query compound with negative 

Table 5 False positive rate of ddE based decision on PAAs with ortho substitution

a -5 kcal/mol ddE cutoff

Example False positive  ratea

Class 1: two CH2CH3 or larger substituents at both R1 and R2 88.9% (8/9)

Class 2: one CH2CH3 or larger substituent at ortho position with and without 
the other ortho substitution

55.0% (44/80)

Class 3: Smaller substituents at R1 and/or R2 17.9% (5/28)

Class 4: No ortho substitution 29% (29/100)
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Fig. 2 ROC curve of prediction with various cutoff values of ddE of working dataset. Distance between the left upper corner and each plot 
on the ROC curve were shown in Fig. 2

Fig. 3 Indicators for optimal cutoff value of ddE. Black line represents Youden’s index and blue line represents distance between the left upper 
corner, 100% true positive rate and 0% false positive rate, and plots on the ROC curve. Youden’s index became plateau exceeding 0.48 at a range 
from ‑5.64 to ‑2.75 kcal/mol cutoff values and the biggest at ‑4.86 kcal/mol. The distance were less than 0.38 from ‑5.64 to ‑1.87 kcal/mol cutoff 
values and became the shortest at ‑4.86 kcal/mol
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prediction will be Ames test negative. LR + and LR- 
with -5 kcal/mol cutoff were 2.99 and 0.37 in this study 
(Table 6). When calculated from the previous report pre-
dicting Ames results of PAAs with commercially avail-
able three measure QSAR systems [22], LR + /LR- were 
2.33/0.51, 1.46/0.61 and 2.62/0.34. This suggests that the 
proposed approach (Fig. 5) can provide helpful informa-
tion for correcting false positive outcomes for PAAs from 
commonly used QSAR tools.

The calculated best cutoff value of ddE from the ROC 
curve (Fig.  2) was -4.86  kcal/mol. Youden’s index also 
indicated that -4.86 kcal/mol was the best-balanced cut-
off value (Fig.  3). We determined that the suitable ddE 
cutoff point was -5  kcal/mol, rounded from -4.86  kcal/
mol. The two indicators suggested that an appropri-
ate range of cutoff value was between -2.75  kcal/mol 
and -5.64  kcal/mol. Our results were similar to those 
of Bentzien et  al. [24] who reported that a -5.5  kcal/
mol cutoff point for ddE led to a well-balanced predic-
tion. Furukawa et  al. [26] reported the best cutoff value 
of 2.5 kcal/mol via analysis of their internal PAAs, which 

was outside the reasonable range suggested in this study. 
Compared to the two cutoff values of 2.5  kcal/mol and 
-5  kcal/mol obtained in Table  6, the -5  kcal/mol cutoff 
point improved the PPV from 54.7% to 65.6%, with a 
reduction in the NPV from 85.4% to 80.9%. We consider 
an NPV of approximately 80% to be acceptable, as the 
reproducibility of Ames test results among research facil-
ities was reported to be 80–85% [30]. Thus, a predictivity 
of approximately 80% is a realistic goal predicting Ames 
mutagenicity.

The results in this study revealed limitations of the ddE 
approach. The ddE approach was not effective to PAAs 
with MW > 500, two ortho substituted groups of  CH2CH3 
or larger, or ring opening system. The sensitivity, speci-
ficity, PPV, and NPV for PAAs with MWs > 500 were 
50.0%, 40.0%, 10.0% and 85.7%, respectively (Table  4). 
The majority of positive calls from the ddE classifica-
tion were false positives. Two reasons for the very low 
positive prediction performance of the ddE-classification 
were considered. One was permeability through the bac-
terial outer membrane. The ability of a test compound 

Table 6 Prediction performance with various ddE threshold values with ddE‑classified PAAs

a Percentage of ddE computable PAAs, of which 40.0% Ames positive

ddE cut‑off value (kcal/moll) 10 7.5 5 2.5 0 ‑2.5 ‑5 ‑7.5 ‑10

Sensitivity (%) 93.8 91.0 88.2 85.4 82.6 77.3 72.0 61.1 54.2

Specificity (%) 33.0 40.0 47.3 54.9 62.2 69.4 75.9 78.3 81.3

Positive prediction value (%) 47.2 49.2 51.6 54.7 58.2 61.7 65.6 64.3 64.9

Negative prediction value (%) 89.2 87.4 86.2 85.4 84.8 82.7 80.9 75.9 73.6

Accuracy (%) 56.7 59.8 63.2 66.7 70.1 72.5 74.4 71.6 70.8

Balanced accuracy (%) 63.4 65.5 67.7 70.1 72.4 73.3 74.0 69.7 67.8

Mathews correlation coefficient 0.37 0.37 0.38 0.38 0.39 0.37 0.36 0.29 0.25

Positive likelihood ratio 1.40 1.52 1.67 1.89 2.19 2.53 2.99 2.82 2.90

Negative likelihood ratio 0.19 0.23 0.25 0.27 0.28 0.33 0.37 0.50 0.56

Coveragea (%) 100.0

Fig. 4 Ames test results and ddE values of 824 PAAs in Table 6
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to permeate Ames tester strain cells was verified by its 
sensitivity to crystal violet (MW = 408) [31], and the size 
limit of molecules able to permeate the outer membrane 
has not yet been clarified [32]. The other reason may be 
difficulties in ddE calculations due to the structural com-
plexity of larger molecules. A previous study of the ddE 
approach by Bentzien et  al. [24] used only PAAs with a 
MW 500 and less. Although the threshold of MW could 
be more optimized, the dataset was insufficient in this 
study.

The presence of compounds with ring openings in ddE 
calculations can cause many false positives (Table  3). 
The ring opening data suggested that the nitrenium ion 
derived from the query compound was more stable in an 
open ring form, which is no longer an aromatic amine 
(Fig. 1). This explains the very low percentage of Ames-
positive compounds (6/51 of ring-opening compounds).

The influence of ortho substituent groups should be 
considered in expert reviews together with ddE val-
ues. The ddE approach was based on the nitrenium ion 
hypothesis that PAAs are metabolized into nitrenium 
ions, which then react with DNA components. Steric 
hindrance from ortho position substituents may inhibit 

N-hydroxylation, the first step in the metabolic activation 
of aromatic amines [33]. Shamovsky et al. [34] suggested 
that structural modifications to prevent H-bonding or 
geometric fitting of PAA to CYP1A2 effectively prevents 
mutagenicity. Table 5 shows that large substituted groups 
at ortho positions increased the false positive predictions 
of the ddE approach.

We propose integrating the ddE-based approach into 
the QSAR mutagenicity assessment scheme for PAAs 
(Fig.  5). When two widely-used QSAR systems (knowl-
edge-based and statistics-based) under ICH M7 provided 
consensus results on a PAA query, the NPV was 89%, and 
the PPV was 55% [22]. The consensus negative prediction 
from the two QSAR systems could be acceptable. If no 
consensus negative outcome is given, even if a consensus 
positive outcome is reached, further assessment is useful. 
The query compounds with a non-PAA alert, e.g., quino-
line, aromatic nitro, or acid halide, derived from common 
QSAR systems or MWs > 500 falls beyond the scope of 
the ddE approach, and case-by-case decisions are needed.

For the query compounds with MWs ≤ 500, ddE val-
ues are calculated. Ortho substituents of ethyl-sized 
or larger groups increased Ames negative probability 

Fig. 5 Proposed scheme of integration of the ddE approach into QSAR mutagenicity assessment of PAA
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regardless of ddE values (Table 5). A ring opening remark 
also increased the probability of Ames negative results 
(Table 3). Either can be a good reason for negative con-
clusion. When the ddE value exceeds -5 kcal/mol, a nega-
tive conclusion is reasonable. When ddE is -5 kcal/mol or 
less for the query compounds with no or small ortho sub-
stituents, a positive conclusion is most plausible. Because 
the PPV was 65.6% in the ddE approach in this study 
(Table  6), one-third of the PAAs in this category were 
Ames negative, making the Ames test a good option.

The decision tree shown in Fig. 5 is one of the currently 
applicable approaches. The discussion on the activating 
and deactivating features of substituted groups of PAAs is 
an important part of the QSAR expert review. This study 
can provide a better understanding within the frequently 
required discussions in cases where activating and deac-
tivating features exist simultaneously; however, the accu-
racy of QSAR prediction could be further improved. The 
influence of one large substituent at an ortho position 
remains unclear. The ddE calculation is not useful for 
estimating CYP inhibition. Feeney et  al. [35] noted the 
difficulties of predicting metabolically activated muta-
gens such as PAAs and suggested the potential use of 
multiple-instance learning to determine metabolic con-
tributions. These new approaches will enable the further 
improvement of QSAR predictions of the mutagenicity of 
PAAs.

Conclusions
The results of this study suggest that the ddE approach is 
effective in reducing false positive calls in QSAR muta-
genicity assessments for PAAs. We propose the inte-
gration of the ddE approach into the existing QSAR 
mutagenicity assessment scheme for PAAs.
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