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Four functional genotoxic marker 
genes (Bax, Btg2, Ccng1, and Cdkn1a) 
discriminate genotoxic hepatocarcinogens 
from non-genotoxic hepatocarcinogens 
and non-genotoxic non-hepatocarcinogens 
in rat public toxicogenomics data, Open 
TG-GATEs
Chie Furihata1,2*   and Takayoshi Suzuki3 

Abstract 

Background Previously, Japanese Environmental Mutagen and Genome Society/Mammalian Mutagenicity Study 
Group/Toxicogenomics Study Group (JEMS/MMS toxicogenomic study group) proposed 12 genotoxic marker genes 
(Aen, Bax, Btg2, Ccnf, Ccng1, Cdkn1a, Gdf15, Lrp1, Mbd1, Phlda3, Plk2, and Tubb4b) to discriminate genotoxic hepato-
carcinogens (GTHCs) from non-genotoxic hepatocarcinogens (NGTHCs) and non-genotoxic non-hepatocarcinogens 
(NGTNHCs) in mouse and rat liver using qPCR and RNA-Seq and confirmed in public rat toxicogenomics data, Open 
TG-GATEs, by principal component analysis (PCA). On the other hand, the U.S. Environmental Protection Agency (US 
EPA) suggested seven genotoxic marker genes (Bax, Btg2, Ccng1, Cgrrf1, Cdkn1a, Mgmt, and Tmem47) with Open TG-
GATEs data. Four genes (Bax, Btg2, Ccng1, and Cdkn1a) were common in these two studies. In the present study, we 
examined the performance of these four genes in Open TG-GATEs data using PCA.

Results The study’s findings are of paramount significance, as these four genes proved to be highly effective 
in distinguishing five typical GTHCs (2-acetylaminofluorene, aflatoxin B1, 2-nitrofluorene, N-nitrosodiethylamine 
and N-nitrosomorpholine) from seven typical NGTHCs (clofibrate, ethanol, fenofibrate, gemfibrozil, hexachloroben-
zene, phenobarbital, and WY-14643) and 11 NGTNHCs (allyl alcohol, aspirin, caffeine, chlorpheniramine, chlorpropa-
mide, dexamethasone, diazepam, indomethacin, phenylbutazone, theophylline, and tolbutamide) by PCA at 24 h 
after a single administration with 100% accuracy. These four genes also effectively distinguished two typical GTHCs 
(2-acetylaminofluorene and N-nitrosodiethylamine) from seven NGTHCs and ten NGTNHCs by PCA on 29 days 
after 28 days-repeated administrations, with a similar or even better performance compared to the previous 12 genes. 
Furthermore, the study’s analysis revealed that the three intermediate GTHC/NGTHCs (methapyrilene, monocrotaline, 
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and thioacetamide, which were negative in the Salmonella test but positive in the in vivo rat liver test) were located 
in the intermediate region between typical GTHCs and typical NGTHCs by PCA.

Conclusions The present results unequivocally demonstrate the availability of four genotoxic marker genes ((Bax, 
Btg2, Ccng1, and Cdkn1a) and PCA in discriminating GTHCs from NGTHCs and NGTNHCs in Open TG-GATEs. These 
findings strongly support our recommendation that future rat liver in vivo toxicogenomics tests prioritize these 
four genotoxic marker genes, as they have proven to be highly effective in discriminating between different types 
of hepatocarcinogens.

Keywords Toxicogenomics, Genotoxic marker genes, Open TG-GATEs, Genotoxic carcinogen, Non-genotoxic 
carcinogen, Non-carcinogen

Introduction
Carcinogenicity testing is important to identify carcino-
gens in environmental chemicals [1], chemicals in daily 
life [2], and pharmaceutical drug and pesticide develop-
ment [3, 4]. However, evaluating carcinogenicity using 
conventional 2-year rodent-based animal studies is time-
consuming and labor-intensive [5]. Thus, there is an 
increased need to develop novel alternative approaches 
to these rodent bioassays for assessing the carcinogenic-
ity of substances [6].

Carcinogens have traditionally been classified into two 
categories according to their presumed mode of action: 
genotoxic (GTC) and non-genotoxic (NGTC). An OECD 
expert group defined GTCs as having the potential to 
induce cancer by interacting directly with DNA and the 
cellular apparatus involved in preserving the integrity of 
the genome. In contrast, NGTCs have the potential to 
induce cancer without interacting directly with either 
DNA or the apparatus mentioned above [7]. Genotoxic 
carcinogens are usually identified based on positive 
results in different in vitro and in vivo test systems. These 
include detecting DNA strand breaks (comet assay) 
[OECD TG489 (in vivo)], unscheduled DNA synthesis 
[OECD TG482 (in vitro), OECD TG486 (in vivo)], sis-
ter chromatid exchange [OECD TG479 (in vitro)], chro-
mosomal aberrations [OECD TG473 (in vitro)], DNA 
adduct formation [8], mitotic recombination [9], and 
gene mutation [OECD TG476 (in vitro)]. Standard tests 
of mutagenicity include the Ames test [OECD TG471], 
in vitro metaphase chromosome aberration assay [OECD 
TG473], in  vitro micronucleus assay [OECD TG487], 
L5178Y/tk ± mouse lymphoma (thymidine kinase) gene 
mutation assay [OECD TG490], in  vivo micronucleus 
assay in rodents [OECD TG474], and transgenic rodent 
mutation assay [OECD TG488]. NGTCs show a thresh-
old for exerting hazardous effects, and the various 
authoritative bodies set guidelines regarding appropri-
ate exposure levels like other hazardous substances. They 
recommended clear differences between threshold and 
non-threshold carcinogens dealing with carcinogen clas-
sification and risk assessment [10].

Toxicogenomics, the application of transcription pro-
filing to toxicology, has been widely used for elucidating 
the molecular and cellular actions of chemicals and other 
environmental stressors on biological systems, predict-
ing toxicity before any functional damages, and classifi-
cation of known or new toxicants based on signatures of 
gene expression. The success of a toxicogenomics study 
depends upon close collaboration among experts in dif-
ferent fields, including a toxicologist or biologist, a bioin-
formatician, a statistician, a physician, and, sometimes, a 
mathematician [11].

Previously, the JEMS/MMS toxicogenomics study 
group has been conducting studies using DNA micro-
array [12] and qPCR [13–17] to discriminate genotoxic 
hepatocarcinogens from non-genotoxic hepatocarcino-
gens in mice [13, 14, 16] and in rats [15] for use in an 
in vivo short-term toxicogenomics screening test for gen-
otoxic carcinogens. We proposed 12 genotoxic marker 
genes (Aen, Bax, Btg2, Ccnf, Ccng1, Cdkn1a, Gdf15, 
Lrp1, Mbd1, Phlda3, Plk2 and Tubb4b) to discrimi-
nate GTHCs from NGTHCs in mouse study using eight 
mouse GTHCs from five different functional groups 
[aromatic amines: 2-acetamidofluorene and 2,4-diami-
notoluene; azobenzene: 4-dimethylaminoazobenzene; 
ester of carbamic acid: urethane; heterocyclic aromatic 
compound: quinoline; and nitrosamines: diisopro-
panolnitrosamine, 4-(methylnitrosamino)−1-(3-pyridyl) 
1-butanone, and N-nitrosomorpholine] and four mouse 
non-genotoxic hepatocarcinogens [chlorinated aromatic 
hydrocarbons:1,4-dichlorobenzene and dichlorodiphe-
nyltrichloroethane; phthalate: di(2-ethylhexyl) phtha-
late; and heterocyclic organic compound: furan] [14]. 
These seven mouse genotoxic hepatocarcinogens [18–24] 
except urethane [25] also induced hepatocellular carci-
noma in rats. The results suggested that these carcino-
gens had similar modes of action in both rat and mouse 
liver. As described previously [14], nine (Aen, Bax, Btg2, 
Ccng1, Cdkn1a, Gdf15, Mbd1, Phlda3, and Plk2) of 12 
marker genes are members of gene families related to the 
intrinsic apoptotic signaling pathway in response to DNA 
damage by the p53 class mediator. Ccnf may be related to 
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DNA repair and DNA damage [26]. Lrp1 may be related 
to tumor growth and metastasis, particularly by modulat-
ing three extracellular tumor environments [27]. Tubb4b 
may be related to metastasis in colon cancer [28]. Table 2 
shows the symbol, gene name, and gene ID of the 12 
corresponding rat genes. We confirmed the 12 genes in 
public rat toxicogenomics data, Open TG-GATEs [29]. 
We studied differentially expressed protein-coding genes 
with targeted RNA-Seq on freshly frozen rat liver tissues 
[30] and on formalin-fixed paraffin-embedded (FFPE) 
rat liver tissues [31, 32] after 28  days of treatment with 
chemicals using PCA.

The present study examined data from rat [male 
Crl:CD Sprague–Dawley (SD) rat, 6-week-old] Open TG-
GATEs with newly selected genes. The Open Japanese 
Toxicogenomics Project-Genomics Assisted Toxicity 
Evaluation System (Open TG-GATEs) was developed by 
the Japanese Toxicogenomics Project (TGP) consortium 
and opened to the public in 2015 (http:// toxico. nibio hn. 
go. jp/ engli sh/) [33]. The data include 170 chemicals. The 
data contain concurrent vehicle controls, three rats per 
group, three doses, and various time points (3, 6, 9, and 
24 h after a single administration and 4, 8,15, and 29 days 
after repeated administrations).

The registered data include five typical GTHCs 
[2- acetamidofluorene (AAF), aflatoxin B1 (AFL), 
2-nitrofluorene (2NF), N-nitrosodiethylamine (DEN) 
and N-nitrosomorpholine (NNM)] and seven typi-
cal NGTHCs [clofibrate (CLO), ethanol (ETH), fenofi-
brate (FEN), gemfibrozil (GEM), hexachlorobenzene 
(HEX), phenobarbital (PHE) and WY-14643 (WY)] for 
comparison. Among them, three genotoxic hepatocar-
cinogens (AFL: mycotoxin; 2NF: nitrated polycyclic 
aromatic hydrocarbon; and NNM: nitrosamine) and all 
seven NGTHCs are different from those in our previous 
study [14]. Seven NGTHCs were fibric acid derivatives: 
CLO and GEM; simple alcohol: ETH; synthetic phe-
noxy-isobutyric acid derivate: FEN; chlorinated aromatic 
hydrocarbon: HEX; barbituric acid derivative: PHE; and 
thioacetic acid derivative: WY, a peroxisome proliferator. 
Six NGTHCs, except HEX, have functional groups differ-
ent from those of our four previous NGTHCs.

The IWGT-Toxicogenomics meeting was held at ICEM 
in Toronto in 2022, where 12 genotoxicity marker genes 
from JEMS/MMS and seven marker genes from EPA 
[34] were discussed. Four genes (Bax, Btg2, Ccng1, and 
Cdkn1a) were common in these two studies. Then, we 
analyzed the four genes in the rat public toxicogenomics 
data “Open TG-GATEs”.

We analyzed 23 previous chemicals (five GTHCs, 
seven NGTHCs, and eleven NGTNHCs) [29] and three 
intermediate GTHCs/NGTHCs. We designated that 
typical GTHCs are mutagenic in the Salmonella test and 

genotoxic in some in vivo liver tests, such as the micronu-
cleus test, the transgenic rodent mutation assay, and the 
UDS test and carcinogenic in rat liver. Typical NGTHCs 
are not mutagenic in the Salmonella test, do not show 
genotoxicity in in vivo rat liver tests, and are carcinogenic 
in rat liver. NGTNHCs are not mutagenic in the Salmo-
nella test and are not carcinogenic in rat liver. Intermedi-
ate GTHC/NGTHCs are negative in the Salmonella test 
and show contradictory results with in vivo rat liver tests. 
Table 1 summarizes this study’s classification of GTHC, 
NGTHC, NGTNHC, and intermediate GTHC/NGTHC 
[35–77].

In the present study, we propose that the four genes 
(Bax, Btg2, Ccng1, and Cdkn1a) instead of the previ-
ous twelve genes (Aen, Bax, Btg2, Ccnf, Ccng1, Cdkn1a, 
Gdf15, Lrp1, Mbd1, Phlda3, Plk2, and Tubb4b) are func-
tional to discriminate genotoxic hepatocarcinogens from 
non-genotoxic hepatocarcinogens and non-genotoxic 
non-hepatocarcinogens in rat liver. The present study 
strongly supports our recommendation that future rat 
liver in  vivo toxicogenomics tests prioritize these four 
genotoxic marker genes, as they have proven highly 
effective in discriminating between different types of 
hepatocarcinogens.

Methods
Chemicals
We analyzed data of the 26 chemicals: five typical 
GTHCs, seven typical NGTHCs, 11 NGTNHCs [29], 
and three intermediate GTHC/NGTHCs from Open 
TG-GATEs. Table  1 summarizes this study’s classifica-
tion of GTHC, NGTHC, NGTNHC, and intermediate 
GTHC/NGTHC [35–77]. Open TG-GATEs presented 
five typical GTHCs: 2-acetamodofluorene (CAS 53–96-3, 
AAF), aflatoxin B1 (CAS 1402–68-2, AFL, IARC Group 
1), 2-nitrofluorene (CAS 607- 57–8, 2NF, IARC Group 
2B), N-nitrosodiethylamine (CAS 55–18-5, DEN, IARC 
Group 2 A), and N-nitrosomorpholine (CAS 59–89-2, 
NNM, IARC Group 2B) at 24 h after a single administra-
tion and two typical GTHCs: AAF and DEN at 29  days 
after repeated administration. Open TG-GATEs pre-
sented seven typical NGTHCs after at 24 h after a single 
administration and at 29  days after repeated adminis-
tration: four PPARα agonists [clofibrate (CAS 637–07-
0, CLO, IARC Group 3), fenofibrate (CAS 49562–28-9, 
FEN), gemfibrozil (CAS 25812- 30–0, GEM, IARC Group 
3), and WY-14643 (CAS 50892–23-4, WY)], two enzyme 
inducers [hexachlorobenzene (CAS 118–74-1, HEX, 
IARC Group 2B) and phenobarbital (CAS 50–06-6, PHE, 
IARC Group 2B)] and ethanol (CAS 64–17- 5, ETH, 
IARC Group 1), which induced oxidative stress. Open 
TG-GATEs presented the data of many NGTNHCs, 
but we selected 11 familiar chemicals in this study. 

http://toxico.nibiohn.go.jp/english/
http://toxico.nibiohn.go.jp/english/
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Table 1 Examined GTHCs, NGTHCs, NGTNHCs and intermediate GTHCs/NGTHCs in the present study

DSB DNA strand breaks, ND Not determied by UDS, MN and comet assays, NL Not listed

adr adrenal gland, eso esophagus, kid kidney, mgl mammary gland, nas nasal cavity, pan: pancreas, pit pituitary gland, ski skin, smi small , sto stomach, tes testes, 
thy thyroid gland, vsc vascular system

No Classification Chemical Abbreviations Salmonella 
test

Male rat in vivo 
liver test

Carcinogenicity 
in malle rat liver

Carcinogenicity 
in male rat in 
other organs

IARC 
group 35

References

1 GTHCs 2-acety-
laminoflu-
orene

AAF  + MN + , UDS +  + mgl, ski NL 36

2 aflatoxin B1 AFB  + UDS +  + - 1 36, 37, 38

3 2-nitroflu-
orene

2NF  + UDS +  + kid, sto 2B 36, 39

4 N-nitrosodi-
ethylamine

DEN  + UDS + , DNA 
single strand 
scission + 

 + eso, kid, vsc 2A 36, 40, 41

5 N-nitroso-
morpholine

NNM  + UDS +  + kid, adr, thy, pit 2B 36, 41–43

6 NGTHCs clofibrate CLO - Pig-a -, UDS -, 
DSB -, MN + 

 + pan, smi, der-
matofibrosarcoma, 
tes

3 36, 44–47

7 ethanol ETH - comet -, DNA 
strand break + 

 + adr, pan, pit 1 36, 48, 49

8 fenofibrate FEN - comet + (weak), 
ND (UDS, MN)

 + pan, tes NL 50, 51

9 gemfibrozil GEM - ND  + adr, pan, tes 3 36, 52, 53

10 hexachlo-
robenzene

HEX - (Dominant lethal 
test -)

 + bile duct, kid 2B 36, 54

11 phenobar-
bital

PHE - MN -, comet -, 
Pig-a -

 + adr, nas 2B 36, 45, 55, 56

12 WY-14643 WY - UDS -  + Leydig cell, pancre-
atic acinar cell

NL 57, 58

13 NGTNHCs allyl alcohol AA - ND - - NL 36, 59

14 aspirin ASP - ND - - NL 36, 60

15 caffeine CAF - ND - - 3 36, 61

16 chlorphe-
niramine

CPA - ND - - NL 36, 62

17 chlorpropa-
mide

CPP - ND - - NL 36, 63

18 dexametha-
sone

DEX - ND - - NL 36, 64

19 diazepam DIA - ND - - 3 36, 65

20 indometha-
cin

IND - ND - - NL 36, 66

21 phenylb-
utazone

PBZ - ND - - 3 36, 67

22 theophyl-
line

THE - ND - - 3 36, 68, 69

23 tolbuta-
mide

TOL - ND - - NL 36, 70

24 intermediate methapy-
rilene

MP - MN + , comet -, 
UDS -

 + - NL 36, 55, 71, 72

25 (GTHCs/
NGTHCs)

monocro-
taline

MCT - MN + , DNA-DNA 
interstrand 
crosslinks + ,

 + - 2B 36, 73, 74

26 thioaceta-
mide

TAA - comet + , 
γ-H2AX + , MN -

 + bile duct 2B 36, 75–77
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NGTNHCs do not include carcinogens to other organs 
than liver [36].They are allyl alcohol (CAS 107–18-6, AA), 
aspirin (CAS 50–78-2, ASP), caffeine (CAS 58–08-2, 
CAF, IARC Group3), chlorpheniramine (CAS 113–92-8, 
CPA), chlorpropamide (CAS 94–20-2, CPP), dexameth-
asone (CAS 50–02-2, DEX), diazepam (CAS 439–14-
5, DIA, IARC Group 3), indomethacin (CAS 53–86-1, 
IND), phenylbutazone (CAS 50–33-9, PBZ, IARC Group 
3), theophylline (CAS 58–55-9, THE, IARC Group 3), 
and tolbutamide (CAS 64–77-7, TOL) at 24 h after a sin-
gle administration. Open TG-GATEs examined 10 of the 
11 NGTNHCs except DEX 29 days after repeated admin-
istration. Open TG-GATEs presented three intermediate 
GTHC/NGTHCs: methapyrilene (CAS 91–80-5, MP), 
monocrotaline (CAS 315–22-0, MCT, IARC Group 2B), 
and thioacetamide (CAS 62–55-5, TAA, IARC Group 2B) 
at 24 h after a single administration and at 29 days after 
repeated administration. They are negative in the Sal-
monella test [36] but positive in the in vivo rat liver test 
[71–77]. AAF was a metabolite of 2NF [78]. The IARC 
classification does not contain FEN, WY, AA, ASP, CPA, 
CPP, DEX, IND, MP, and TOL.

Analyzed genes
Table 2 shows the symbol, gene name, and NCBI gene ID 
of the 12 analyzed rat genes.

Data analysis
We obtained relative fluorescence intensities of DNA 
microarray results of three individual rats in each 
dose- and time-group on the four genes from Open 
TG-GATEs　(http:// toxico. nibio hn. go. jp/ engli sh/). Data 
from Open TG-GATEs were transferred into log2 data 

using the “R Project for Statistical Computing” (https:// 
www.r- proje ct. org/) to stabilize the variance. Ratio (exp/
cont) log2 was calculated against the mean from the con-
trol group (Appendix A.1, A.2, B1, B2, C1, and C2). Dis-
crimination of GTHCs vs. NGTHCs plus NGTNHCs was 
achieved by statistical analysis using the PCA program 
from the “R Project for Statistical Computing” (Appen-
dix A.3, A.4, B3, B4, C3, and C4) as described previously 
[29]. Data for each dose in supplements and each point in 
figures presented in this paper are averages for three rats.

Results
Four genotoxic marker genes discriminate typical GTHCs 
from typical NGTHCs and NGTNHCs at 24 h after a single 
administration and 29 days after repeated administrations
At 24 h after a single administration, as Open TG-GATEs 
presented five typical GTHCs (AAF, AFL, DEN, 2NF, and 
NNM) and seven typical NGTHCs (CLO, ETH, FEN, 
GEM, HEX, PHE, and WY), we analyzed five typical 
GTHCs, seven typical NGTHCs, and optional 11 NGT-
NHCs (AA, ASP, CAF, CPA, CPP, DEX, DIA, IND, PBZ, 
THE, and TOL), with three doses, 23 chemicals, 69 data 
points. Appendix A.1 shows the gene expression profile 
(log2), Appendix A.2 shows the first principal compo-
nent (PC1) and the second principal component (PC2) 
analyzed by PCA, and Fig. 1(A) shows the result of PCA 
of five typical GTHCs, seven typical NGTHCs, and 11 
NGTNHCs 24  h after a single administration in a two-
dimensional figure. Five typical GTHCs are separated 
from seven typical NGTHCs and 11 NGTNHCs by PCA 
in a two-dimensional graph, with (PC1), where GTHCs 
exhibit PC1 below –0.719 (DEN-low), and NGTHCs 
exhibit PC1 above −0.292 (DIA-high) (Appendix A.2). 
PC1 of DEN was –0.719, −2.611, −4.885 for DEN-low, 
DEN-middle and DEN-high respectively, and reflected 
dose-dependent changes in gene expressions. The dis-
tinction between GTHCs and NGTHCs by the four genes 
is not inferior to, but somewhat superior to, the distinc-
tion by the 12 genes presented previously [reference 29, 
Fig. 4(C)].

At 29 days after repeated administration, as Open TG-
GATEs presented two typical GTHCs and seven typical 
NGTHCs, we analyzed two typical GTHCs (AAF-low, 
AAF-middle, AAF-high, DEN-low, and DEN-middle), 
seven typical NGTHCs with three doses, and optional 
choice of the 10 NGTNHCs (AA, ASP, CAF, CPA, CPP, 
DIA, PBZ, THE, TOL with three doses, and IND-low and 
IND-middle), 19 chemicals, 55 data points. Appendix 
A.3 shows the gene expression profile (log2), Appendix 
A.4 shows the first principal component (PC1) and the 
second principal component (PC2) analyzed by PCA, 

Table 2 Twelve genes analyzed in the present study

No Symbol Gene name Gene ID

1 Aen apoptosis enhancing nuclease 361,594

2 Bax BCL2 associated X, apoptosis regulator 24,887

3 Btg2 BTG anti-proliferation factor 2 29,619

4 Ccnf cyclin F 117,524

5 Ccng1 cyclin G1 25,405

6 Cdkn1a cyclin-dependent kinase inhibitor 1A 114,851

7 Gdf15 growth differentiation factor 15 29,455

8 Lrp1 LDL receptor related protein 1 299,858

9 Mbd1 methyl-CpG binding domain protein 1 291,439

10 Phlda3 pleckstrin homology-like domain, family 
A, member 3

363,989

11 Plk2 polo-like kinase 2 83,722

12 Tubb4b tubulin, beta 4B class IVb 296,554

http://toxico.nibiohn.go.jp/english/
https://www.r-project.org/
https://www.r-project.org/
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and Fig.  1(B) presents the result of PCA on two typical 
GTHCs, DEN and AAF, seven typical NGTHCs, and 10 
NGTNHCs. Figure 1(B) demonstrates the discrimination 
of two typical GTHCs from seven typical NGTHCs and 
10 NGTNHCs with PC1 by PCA in a two-dimensional 
graph, where GTHCs exhibit PC1 below −3.724 (DEN-
low), and NGTHCs and NGTNHCs exhibit PC1 above 
−0.388 (CPA-high) (Appendix A.4). The distinction of 
GTHCs from NGTHCs plus NGTNHCs by four genes is 
no different from the distinction by 12 genes presented 
previously [reference 29, Fig. 4(F)].

Our research has uncovered a novel aspect of genotox-
icity. We have identified four genotoxic marker genes that 
discriminate GTHCs from NGTHCs and NGTNHCs. This 
distinction is observed 24  h after a single administration 
and 29  days after repeated administration, significantly 
advancing our understanding of genetic mechanisms.

Three intermediate GTHC/NGTHCs are located 
in the intermediate region between typical GTHCs 
and typical NGTHCs by PCA with the four genes
In the current study, three additional intermediate 
GTHC/NGTHCs, methapyrilene (MP), monocrotaline 

(MCT), and thioacetamide (TAA), are analyzed. They are 
negative in the Salmonella test but positive in the in vivo 
rat liver test [32–34].

At 24  h after a single administration of Open TG-
GATEs data, we analyzed five typical GTHCs (AAF, AFL, 
DEN, 2NF, and NNM), seven typical NGTHCs, optional 
choice of the 11 NGTNHCs (AA, ASP, CAF, CPA, CPP, 
DEX, DIA, IND, PBZ, THE, and TOL), and three inter-
mediate GTHC/NGTHCs (MCT, MP, and TAA), with 
three doses, 26 chemicals, 78 data points. Appendix B.1 
shows the gene expression profile (log2) of the four genes, 
Appendix B.2 shows the first principal component (PC1) 
and the second principal component (PC2) analyzed by 
PCA, and Fig.  2 (A) presents the result of PCA on five 
typical GTHCs, seven typical NGTHCs, 11 NGTNHCs, 
and three intermediate GTHC/NGTHCs 24  h after a 
single administration. The PCA results separate five typ-
ical GTHCs from seven typical NGTHCs and 11 NGT-
NHCs by PCA with PC1 in a two-dimensional graph, 
where GTHCs exhibit PC1 below –0.789 (DEN-low; PC1: 
−0.789, PC2: −1.035). NGTHCs and NGTNHCs exhibit 
PC1 above −0.334 (IND-high; PC1: −0.334, PC2: 1.355) 
(Appendix B.2). Speaking of the three intermediates 
GTHC/NGTHCs, TAA-high (PC1: −1.74, PC2: −0.251) 

Fig.1 A and B Analysis of rat liver toxicogenomics public data (OPEN TG-GATEs, DNA microarray) by PCA with the four genes. Discrimination 
of GTHCs from NGTHCs and NGTNHCs at 24 h after a single administration [Fig. 1 (A)] and 29 days after repeated administrations [Fig. 2 (B)] by PCA 
with the four genotoxic marker genes (Bax, Btg2, Ccng1, and Cdkn1). The gene expression profile (log2) was calculated: the mean of each control 
group was calculated as 0 (log2), and the ratio (exp/cont) (log2) was calculated (Appendix A.1 for 24 h and Appendix A.3 for 29 days). These 
numerical values were analyzed by PCA (Appendix A.2 for 24 h and Appendix A.4 for 29 days). At 24 h, Fig. 1(A) shows the results of 23 chemicals 
with three doses, a total of 69 points: five typical GTHCs (brown-colored, AAF, AFL, DEN, NNM, and 2NF) were discriminated from seven typical 
NGTHCs (yellow-colored, CLO, ETH, FEN, GEM, HEX, PHE, and WY) and 11 NGTNHCs (blue-colored, AA, ASP, CAF, CPA, CPP, DEX, DIA, IND, PBZ, THE, 
and TOL). At 29 days, Fig. 1(B) shows the results of 19 chemical, total of 55 points: two typical GTHCs (brown-colored, AAF-low, -middle, and -high; 
DEN-low and -) were discriminated from seven typical NGTHCs (yellow-colored, CLO, ETH, FEN, GEM, HEX, PHE, and WY with three doses) and 10 
NGTNHCs (blue-colored, AA, ASP, CAF, CPA, CPP, DIA, PBZ, THE, and TOL with three doses and IND-low and -middle). Each group is enclosed 
with an optional dashed ellipse. Five GTHCs [AAF: 2- acetamidofluorene, AFL: aflatoxin B1, 2NF: 2-nitrofluorene, DEN: N-nitrosodiethylamine 
and NNM: N-nitrosomorpholine], seven NGTHCs [CLO: clofibrate, ETH: ethanol, FEN: fenofibrate, GEM: gemfibrozil, HEX: hexa-chlorobenzene, 
PHE: phenobarbital, and WY: WY-14643], and 11 NGTNHCs (mostly pharmaceutical drugs) [AA: allyl alcohol, ASP: aspirin, CAF: caffeine, CPA: 
chlorpheniramine, CPP: chlorpropamide, DEX: dexamethasone, DIA: diazepam, IND: indomethacin, PBZ: phenylbutazone, THE: theophylline, 
and TOL: tolbutamide]



Page 7 of 14Furihata and Suzuki  Genes and Environment           (2024) 46:28  

is in the GTHCs area, and MCT-high (PC1: −0.075, PC2: 
−0.557), MP-high (PC1: −0.408, PC2: −0.659), and MP-
middle (PC1: 0.747, PC2: −0.79) are in the intermediate 
area. TAA-low (PC1: 1.10, PC2: −0.385), TAA-middle 
(PC1: 0.135, PC2: −0.173), MP-low (PC1: 0.952, PC2: 
−0.424), MCT-middle (PC1: 0.651, PC2: −0.231), and 
MCT-low (PC1: 1.043, PC2: −0.47) are in the NGTHCs 
and NGTNHCs area. The results show that the three 
intermediate GTHC/NGTHCs、MCT, MP, and TAA 
span the GTHCs, intermediate, and NGTHCs and NGT-
NHCs areas at 24 h after a single administration.

At 29  days, Open TG-GATEs presented only two 
GTHCs. We analyzed two typical GTHCs (AAF with 
three doses and DEN-low and DEN-middle), seven 

typical NGTHCs with three doses, optional 10 NGT-
NHCs (AA, ASP, CAF, CPA, CPP, DIA, PBZ, THE, TOL 
with three doses, and IND-low and IND-middle), and 
three intermediate GTHC/NGTHCs (MCT-low, MCT-
middle, MP-low, MP-middle, MPP-high, TAA-lor, 
TAA-middle, and TAA-high), 22 chemicals, 63 points. 
Appendix B.3 presents the gene expression profile 
(log2), Appendix B.4 presents a first principal compo-
nent (PC1) and a second principal component (PC2) 
analyzed by PCA, and Fig.  2(B) presents the result of 
PCA on two typical GTHCs, seven typical NGTHCs, 
10 NGTNHCs, and three intermediate GTHC/
NGTHCs 29  days after repeated administration. Fig-
ure 2(B) shows the discrimination of two GTHCs from 

Fig. 2 A and B Analysis of three intermediate GTHC/NGTHCs in rat liver toxicogenomics public data (OPEN TG-GATEs) by PCA with the four genes. 
Three additional intermediate GTHC/NGTHCs, methapyrilene (MP), monocrotaline (MCT), and thioacetamide (TAA), were analyzed with typical 
GTHCs, typical NGTHCs and NGTNHCs at 24 h after a single administration [Fig. 2(A)] and at 29 days after repeated administration [Fig. 2(B)] by PCA 
with four genotoxic marker genes (Bax, Btg2, Ccng1, and Cdkn1). The gene expression profile (log2) was calculated: the mean of each control 
group was calculated as 0 (log2), and ratio (exp/cont) (log2) was calculated (Appendix B.1 for 24 h and Appendix B.3 for 29 days). These numerical 
values were analyzed by PCA (Appendix B.2 for 24 h and Appendix B.4 for 29 days). At 24 h, Fig. 2(A) shows the results of 26 chemicals with three 
doses (low, middle and high), total of 78 points: five typical GTHCs (brown-colored, AAF, AFL, DEN, NNM, and 2NF) were discriminated from seven 
typical NGTHCs (yellow-colored, CLO, ETH, FEN, GEM, HEX, PHE, and WY) and 11 NGTNHCs (blue-colored, AA, ASP, CAF, CPA, CPP, DEX, DIA, IND, 
PBZ, THE, and TOL). GTHCs exhibit PC1 below –0.789 (DEN-low; PC1: −0.789, PC2: −1.035). NGTHCs and NGTNHCs exhibit PC1 above −0.334 
(IND-high; PC1: −0.334, PC2: 1.355) (Appendix B.2). Speaking of the three intermediates GTHC/NGTHCs (MCT: □, MP: △, and TAA: 〇), TAA-high 
(PC1: −1.742, PC2: −0.251) is in the GTHCs area (below PC1: −0.789). MP-high (PC1: −0.408, PC2: −0.659), MCT-high (PC1: −0.075, PC2: −0.557) 
and MP-middle (PC1: 0.747, PC2: –0.79) are in the intermediate area (orange dashed circle). TAA-middle (PCA: 0.135, PC2: −0.173), TAA-low (PC1: 
1.101, PC2: −0.385), MP-low (PC1: 0.952, PC2: −0.424), MCT-middle (PC1: 0.851, PC2: −0.231), MCT-high (PC1: 1.043, PC2: −0.47) and MCT-middle 
(PC1: 0.851, PC2: −0.231) are in the NGTHCs and NGTNHCs area. At 29 days, Fig. 2(B) shows the results of 22 chemical, total of 63 points: two typical 
GTHCs (brown-colored, AAF-low, -middle, and -high; DEN-low and -high) were discriminated from seven typical NGTHCs (yellow-colored, CLO, ETH, 
FEN, GEM, HEX, PHE, and WY with three doses) and 10 NGTNHCs (blue-colored, AA, ASP, CAF, CPA, CPP, DIA, PBZ, THE, and TOL with three doses 
and IND-low and -middle). GTHCs exhibit PC1 below −2.906 (DEN-low). NGTHCs and NGTNHCs exhibit PC1 above 0.001 (CPA-high) (Appendix 
B.4). Three intermediate GTHC/NGTHCs, MCT-middle (PC1: −4.125, PC2: −0.409), MP-high (PC1: −4.486, PC2: 1.642), TAA-middle (PC1: −3.043, PC2: 
−0.158), and TAA-high (PC1: −3.667, PC2: 0.274), are in the GTHCs area. In contrast, MCT-low (PC1: −2.279, PC2: −1.467), MP-middle (PC1: −1.403, PC2: 
−0.398) and TAA-low (PC1: −0.651, PC2: 0.248) are in the intermediate area between GTHCs and NGTHC and NGTNHCs. Only MP-low (PC1: 0.454, 
PC2: 0.163) is in the NGTHCs and NGTNHCs area. Each group is enclosed with an optional dashed ellipse. Five GTHCs [AAF: 2- acetamidofluorene, 
AFL: aflatoxin B1, 2NF: 2-nitrofluorene, DEN: N-nitrosodiethylamine and NNM: N-nitrosomorpholine], seven NGTHCs [CLO: clofibrate, ETH: ethanol, 
FEN: fenofibrate, GEM: gemfibrozil, HEX: hexa-chlorobenzene, PHE: phenobarbital, and WY: WY-14643], 11 NGTNHCs (mostly pharmaceutical drugs) 
[AA: allyl alcohol, ASP: aspirin, CAF: caffeine, CPA: chlorpheniramine, CPP: chlorpropamide, DEX: dexamethasone, DIA: diazepam, IND: indomethacin, 
PBZ: phenylbutazone, THE: theophylline, and TOL: tolbutamide] and three intermediate GTHC/NGTHCs [MCT: monocrotaline, MP: methapyrilene, 
and TAA: thioacetamide]
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seven NGTHCs and 10 NGTNHCs with PC1 by PCA 
in a two-dimensional graph, where GTHCs exhibit PC1 
below −2.906 (DEN-low). NGTHCs and NGTNHCs 
exhibit PC1 above 0.001 (CPA-high) (Appendix B.4). 
Speaking of the three intermediate GTHC/NGTHCs, 
MCT-middle (PC1: −4.125, PC2: −0.409), MP-high 
(PC1: −4.486, PC2: 1.642), TAA-middle (PC1: −3.043, 
PC2: −0.158), and TAA-high (PC1: −3.667, PC2: 
0.274) are in the GTHCs area. In contrast, MCT-low 
(PC1: −2.279, PC2: −1.467), MP-middle (PC1: −1.403, 
PC2: −0.398) and TAA-low (PC1: −0.651, PC2: 0.248) 
are in the intermediate area between GTHCs and 
NGTHC and NGTNHCs. Only MP-low (PC1: 0.454, 
PC2: 0.163) is in the NGTHCs and NGTNHCs area. 
The results show that the three intermediate GTHC/
NGTHCs、MCT, MP, and TAA, span the GTHCs 
and intermediate areas except MP-low after repeated 
administrations for 28  days. The 29-day results show 
that the three intermediate GTHC/NGTHCs are mov-
ing in the GTHCs and intermediate regions compared 
to the 24-h results.

Comparison of analysis of three intermediate GTHC/
NGTHCs analyzed by PCA with the 12 previously presented 
genes
In the previous paper [29], we presented an analysis of a 
total of 23 chemicals, 69 data points, five typical GTHCs, 
seven typical NGTHCs, and 11 optional NGTNHCs 
at 24  h after a single administration, and a total of 19 
chemicals, 55 data points, except for three intermediate 
GHCs/NGTHCs. Therefore, we only present the result of 
23 chemicals plus three intermediate GHCs/NGTHCs, 
a total of 26 chemicals, 78 data points, analyzed with 12 
previously presented genes at 24 h after a single admin-
istration, and a total of 22 chemicals, 63 data points, 
29  days after repeated administrations, in the present 
paper.

At 24  h after a single administration, Appendix C.1 
presents the gene expression profile (log2), Appendix 
C.2 presents the first principal component (PC1) and the 
second principal component (PC2) analyzed by PCA, 
and Fig.  3(A) presents the result of PCA of five typical 
GTHCs, seven typical NGTHCs, 11 NGTNHCs, and 
three intermediate GTHC/NGTHCs, analyzed with 12 

Fig. 3 A and B Comparison of three intermediate GTHC/NGTHCs analyzed by PCA with the 12 previously presented genes. We analyzed 23 
chemicals plus three intermediate GHCs/NGTHCs, a total of 26 chemicals, 78 points, analyzed by PCA with 12 previously presented genes [29] 
at 24 h after a single administration and a total of 22 chemicals, 63 points, at 29 days after repeated administrations. The gene expression profile 
(log2) was calculated: the mean of each control group was calculated as 0 (log2), and ratio (exp/cont) (log2) was calculated (Appendix C.1 for 24 h 
and Appendix C.3 for 29 days). These numerical values were analyzed by PCA (Appendix C.2 for 24 h and Appendix C.4 for 29 days). At 24 h 
after a single administration, The PCA result shows a clear separation of five typical GTHCs from seven typical NGTHCs and 11 NGTNHCs by PCA 
with PC1, where GTHCs exhibit PC1 below –0.381 (DEN-low, PC1: −0.381, PC2: −0.822), and NGTHCs and NGTHCs exhibit PC1 above −0.130 (NGTHC, 
FEN-high, PC1: −0.13, PC2: 3.184) (Appendix C.2). Speaking of the three intermediate GTHC/NGTHCs (MCT: □, MP: △, and TAA: 〇), MP-high (PC1: 
−0.941, PC2: −0.472) and TAA-high (PC1: −3.04, PC2: −0.869) are in the GTHCs area. MCT-high (PC1: −0.109, PC2: −0.353) and TAA-middle (PC1: 
−0.024, PC2: −1.236) are in the intermediate area. MCT-low (PCA: 1.688, PC2: −0.149), MCT-middle (PC1: 1.149, PC2: −0.489), MP-low (PC1: 1.702, 
PC2: −0.059), MP-middle (PC1:1.324, PC2: −0.618), and TAA-low (PC1: 1.205, PC2: −0.671) are in the NGTHCs and NGTNHCs area. The analysis 
with12 genotoxic marker genes are similar to that with four genotoxic marker genes [Fig. 2(A)]. At 29 days after repeated administration, Fig. 3(B) 
demonstrates the discrimination of two GTHCs from seven NGTHCs and 10 NGTNHCs with PC1 by PCA, where GTHCs exhibit PC1 below −3.729 
(DEN-low, PC1: −3.729, PC2: −1.776), and NGTHCs and NGTNHCs exhibit PC1 above −0.084 (PHE-low, PC1: −0.084, PC2: −1.015) (Appendix C.4). Three 
intermediate GTHC/NGTHCs (MCT: □, MP: △, and TAA: 〇), MCT-middle (PC1: −4.873, PC2: −1.08), MP-high (PC1: −7.093, PC2: 3.554), TAA-middle 
(PC1: −4.502, PC2: −1.021), and TAA-high (PC1: −6.931, PC2: 2.398) are in the GTHCs area. MCT-low (PC1: −2.402, PC2: −1.693), MP-middle (PC1: 
−1.322, PC2: 0.371), and TAA-low (PC1: −1.718, PC2: −0.155) are in the intermediate area between GTHCs and NGTHCs plus NGTNHCs. Only MP-low 
(PC1: 0.565, PC2: −0.792) is in the NGTHCs and NGTNHCs area. The results of an analysis with 12 genotoxic marker genes [Fig. 3(B)] are similar 
to those with four genotoxic marker genes [Fig. 2(B)]
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genotoxic marker genes in a two-dimensional graph. The 
results show a clear separation of five typical GTHCs 
from seven typical NGTHCs and 11 NGTNHCs by PCA 
with PC1, where GTHCs exhibit PC1 below –0.381 
(DEN-low, PC1: −0.381, PC2: −0.822), and NGTHCs and 
NGTHCs exhibit PC1 above −0.13 (NGTHC, FEN-high, 
PC1: −0.13, PC2: 3.184) (Appendix C.2). Speaking of the 
three intermediate GTHC/NGTHCs, MP-high (PC1: 
−0.941, PC2: −0.472) and TAA-high (PC1: −3.04, PC2: 
−0.869) are in the GTHCs area. MCT-high (PC1: −0.109, 
PC2: −0.353) and TAA-middle (PC1: −0.024, PC2: 
−1.236) are in the intermediate area. MCT-low (PCA: 
1.688, PC2: −0.149), MCT-middle (PC1: 1.149, PC2: 
−0.489), MP-low (PC1: 1.702, PC2: −0.059), MP-middle 
(PC1:1.324, PC2: −0.618), and TAA-low (PC1: 1.205, 
PC2: −0.671) are in the NGTHCs and NGTNHCs area. 
The analysis with12 genotoxic marker genes are similar 
to that with four genotoxic marker genes [Fig. 2(A)].

At 29-day after repeated administrations in the previ-
ous paper [23], we presented an analysis of 19 chemi-
cals, two typical GTHCs, seven typical NGTHCs, and 
10 optional NGTNHCs except for three intermedi-
ate GTHC/NGTHCs. Therefore, we only present the 
result of 19 chemicals plus three intermediate GTHC/
NGTHCs, 63 data points, analyzed with 12 previously 
presented genes in the present paper.

At 29 days, Appendix C.3 presents the gene expression 
profile (log2), and Appendix C.4 presents the first prin-
cipal component (PC1) and the second principal com-
ponent (PC2) analyzed by PCA. Figure 3(B) presents the 
results of PCA of two typical GTHCs (AAF-low, AAF-
middle, AAF-high, DEN-low, and DEN-middle), seven 
typical NGTHCs with three doses, optional 10 NGT-
NHCs (AA, ASP, CAF, CPA, CPP, DIA, PBZ, THE, TOL 
with three doses, and IND-low and IND-middle), and 
three intermediate GTHC/NGTHCs (MCT-low, MCT-
middle, MP-low, MP-middle, MP-high, TAA-low, TAA-
middle, and TAA-high), 22 chemicals, 63 points, in a 
two-dimensional graph. Figure  3(B) demonstrates the 
discrimination of two GTHCs from seven NGTHCs and 
10 NGTNHCs with PC1 by PCA, where GTHCs exhibit 
PC1 below −3.73 (DEN-low, PC1: −3.729, PC2: −1.776), 
and NGTHCs and NGTNHCs exhibit PC1 above −0.084 
(PHE-low, PC1: −0.084, PC2: −1.015) (Appendix C.4). 
The distinction between GTHCs and NGTHCs by 12 
genes [Fig.  3(B)] and by four genes [Fig.  2(B)] are simi-
lar. Speaking of the three intermediate GTHC/NGTHCs, 
MCT-middle (PC1: −4.873, PC2: −1.08), MP-high (PC1: 
−7.09, PC2: 3.55), TAA-middle (PC1: −4.50, PC2: −1.02), 
and TAA-high (PC1: −6.93, PC2: 2.40) are in the GTHCs 
area. MCT-low (PC1: −2.40, PC2: −1.693), MP-middle 
(PC1: −1.322, PC2: 0.371), and TAA-low (PC1: −1.72, 

PC2: −0.155) are in the intermediate area between 
GTHCs and NGTHCs plus NGTNHCs. Only MP-low 
(PC1: 0.565, PC2: −0.792) is in the NGTHCs and NGT-
NHCs area. The results of an analysis with 12 genotoxic 
marker genes [Fig.  3(B)] are similar to those with four 
genotoxic marker genes [Fig. 2(B)].

These findings strongly support our recommendation 
that future rat liver in  vivo toxicogenomics tests should 
prioritize these four genotoxic marker genes, as they have 
proven to be highly effective in discriminating between 
different types of hepatocarcinogens.

Discussion
At the beginning of the twenty-first century, we expected 
that toxicogenomics approaches would clarify toxic 
modes of action of chemical compounds, including car-
cinogens, in a biological system. Although hundreds 
of studies were published [33, 79–81], practical in  vivo 
short-term screening test methods for carcinogens using 
toxicogenomics (gene expression profiles) have yet to be 
established. About 90% of human carcinogens are geno-
toxic carcinogens [82]; genotoxic carcinogens are still a 
significant threat to human health. We have been work-
ing to develop an in vivo short-term genotoxic carcinogen 
screening method using gene expression profiles based 
on the toxic modes of action of chemical compounds 
and using data analysis by PCA. It would be desirable to 
distinguish genotoxic carcinogens from non-genotoxic 
carcinogens, and non-genotoxic noncarcinogens by gene 
expression profiles and PCA. For this purpose, it is nec-
essary to identify marker genes that distinguish between 
genotoxic carcinogens, non-genotoxic carcinogens, and 
non-genotoxic noncarcinogens.

We used PCA for our statistical analysis. PCA is an 
unsupervised learning algorithm. PCA is not widely used 
in toxicogenomics but is commonly used in other bio-
logical fields, such as cancer analysis [83, 84]. Ringnér 
wrote that “PCA is often incorporated into genome-wide 
expression studies.” He explained that “samples can then 
be plotted, making it possible to visually assess simi-
larities and differences between samples and determine 
whether samples can be grouped” [85]. PCA is advanta-
geous because the results are clearly understood visually 
in a two-dimensional or three-dimensional figure with 
numerical values without bioinformatics knowledge. 
Previously, we successfully applied PCA to human lung 
cancer cell lines to discriminate four histopathological 
subtypes (adenocarcinoma, squamous cell carcinoma, 
large-cell carcinoma, and small-cell carcinoma) [86, 87]. 
We also successfully applied PCA to toxicogenomics to 
discriminate GTHCs from NGTHCs in mice [14], rat 
models [15, 30–32], and Open TG-GATEs [29].
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The present gene data set (Appendix A.1, A.2, A.3, 
A4; B.1, B.2, B.3, and B.4) may be functional in predict-
ing the genotoxicity of hepato-carcinogenicity of new 
chemicals; we have added our data to for this purpose. 
Users can add their data [gene expression profile (log2)] 
in addition to one of our existing data (Appendix A.1, 
A.3, B.1, and B.3) one by one or in small numbers and 
conduct PCA (https:// www.r- proje ct. org/). For exam-
ple, comparing Appendix A.2 and Appendix B.2, even 
with the addition of the 9 data points, for MCT24hL, 
MCT24hM, MCT24hH, MP24hL, MP24hM, MP24hH 
and TAA24hL, TAA24hM, TAA24hH for intermediate 
GTHC/NGTHCs, the PC1 for AAF24hL in GTHCs does 
not change significantly from −3.283 (Appendix A.2) to 
−3.462 (Appendix B.2).

Users can also attempt to calculate PC1 for their test 
compound using the following formula. The first princi-
pal component (Y1) is given by the linear combination of 
the variable X1, X2, —, Xp.

Y1 = a11X1 + a12X2 + … + a1pXp where a1p is the 
eigenvector, which can be calculated with the PCA pro-
gram in R, and Xp is the canonicalized logarithmic 
(log2)-transformed gene ratio (exp/cont), [(x-μ)/σ].

x is the logarithmic log2 of exp/cont, μ is the mean and 
σ is the standard deviation (https:// strata. uga. edu/ softw 
are/ pdf/ pcaTu torial. pdf ).

When we calculate all data of 24 h and 29 days by R, a11, 
–-, a1p of PC1 are a(Bax): −0.501, a(Btg2): −0.500, a(Ccng1): 
−0.516, a(Cdkn1a): −0.483. Users can calculate their PC1 
(Y1) by introducing their xp into the following equation:

In this equation, users can judge a possibility of GTHC 
by the cut-off value of −0.507 (median value between the 
maximum value of GTHC, DEN24hL,—1.168 and the 
minimum value of NGTHC and NGTNHC, IND24hH, 
−0.778) obtained in our experiment set, assuming that 
the difference of μ and σ in [(x-μ)/σ] will be small when 
total number of samples is greater. We also present the 
table to calculate the more accurate PC1. Users can add 
their data (Gene expression profiles (exp/cont) to excel 
data, then they will get their PC1 value together with a 
re-calculated cut-off value for GTHC, by integrating new 
data.

Similarly, the PC2 (Y2) value can be calculated by the 
following equation:

Y1 = (−0.501) x [(xBax−0.320)/ 0.0.790] + (−0.500) x [(xBtg2−0.262)/0.946] + (−0.516) x [(xCcng1−0.562)/1.1166] + (−0.483) x [(xCdkn1a−0.402)/1.352]

Y2 = (0.516 x [(xBax−0.320)/ 0.790] + 0.202 x [(xBtg2−0.262)/0.946] + 0.079 x [(xCcng1−0.562)/1.166] + (−0.828) x [(xCdkn1a−0.402)/1.352]

Recently, we published a paper to evaluate rat GTHC 
and NGTHC via selected gene expression patterns in the 
liver, as determined by NGS-targeted mRNA sequenc-
ing (RNA-Seq) and PCA [30]. We analyzed two typical 
GTHC (DEN and 3,3’-dimethylbenzidine·2HCl), a typi-
cal NGTHC [di-(2-ethylhexyl)phthalate], and 1,4-dioxan 
(DO), which has long been unclear whether it is a GTHC. 
The results suggested that PCA discriminated between 
two GTHCs and NGTHC and that DO resulted in an 
intermediate gene expression profile different from typi-
cal GTHC and NGTHC. In the "Discussion" of the paper, 
we showed that existing data from TG-GATEs helped 
evaluate new RNA-Seq data by PCA.

We also performed FFPE RNA-Seq to compare a typi-
cal GTHC, 2-acetylaminofluorene (AAF), to genotoxicity 
equivocal p-cresidine (CRE). CRE is used as a synthetic 
chemical intermediate, and this compound is classified as 
an IARC 2B carcinogen and is mutagenic in the Salmo-
nella test, which is non-genotoxic to rat livers as assessed 
by single-strand DNA damage analysis. PCA resulted in 
CRE as an NGTHC in our experiment. Our results sug-
gest that FFPE RNA-Seq and PCA are useful for evaluat-
ing rat GTHCs and NGTHCs [31].

As described previously [29], in connection with 
restrictions on animal use, “OECD Guidelines for the 
Testing of Chemicals, [Repeated Dose 28-Day Oral Tox-
icity Study on Rodents (OECD TG, 2008, 407)] [Test 
No. 407: Repeated Dose 28-Day Oral Toxicity Study in 
Rodents | READ online (oecd-ilibrary.org)] is still valid 
for testing chemical toxicity. This assay determines the 

general toxicity of chemicals in rodents after 28 days of 
oral dosing (e.g., effects on the liver, kidney, heart, and 
lungs). Despite restrictions on animal testing, this test 
will continue to be applied. We can use the animal organs 
from the test collaboratively and the samples, reducing 
the number of experimental animals used. Using FFPE 
samples is also available for RNA-Seq and spatial tran-
scriptomic [88] and helps to reduce the number of exper-
imental animals used.

Recently, Gi et al. reported ten genotoxic marker genes 
(Aen, Cdln1a, Phlda3, Nudt5, Mybl1, Glrx3, Atp6v1f, 
Mok, Cyria, Sugct) from the Open TG-GATEs (with five 
genotoxic hepatocarcinogens) [89]. Aen, Cdln1a, and 
Phlda3 are common with our previous 12 genotoxic 

https://www.r-project.org/
https://strata.uga.edu/software/pdf/pcaTutorial
https://strata.uga.edu/software/pdf/pcaTutorial


Page 11 of 14Furihata and Suzuki  Genes and Environment           (2024) 46:28  

marker genes [14, 29]. We first selected the 12 marker 
genes with eight different mouse hepatocarcinogens and 
then evaluated them with rat Open TG-GSTEs. Since the 
hepatocarcinogens that initially chose the marker genes 
are different, different marker genes were likely chosen.

Next-generation risk assessment of chemical sub-
stances is expected to utilize mechanistic information 
without animal testing. In this regard, toxicogenom-
ics has proven to be a valuable tool for elucidating the 
mechanisms underlying the adverse effects of toxic sub-
stances: 3D liver microtissue, primary human hepato-
cytes (PHH) [90], human liver tissue: cancer-derived cell 
lines (HepaRG) [91], and others are under investigation. 
The current in vivo short-term test will be instrumental 
in selecting the genes to be analyzed.

Toxicogenomics technology has progressed from DNA 
microarray through qPCR to RNA-Seq. DNA microar-
ray and qPCR compare relative fluorescence intensities, 
while RNA-Seq compares digital nucleotide numbers, 
which is more reliable. The following emerging technol-
ogy is the spatial transcriptome (spatial biology) [92]. The 
technique can count the number of mRNA expressions 
for each cell in a pathological section. Incorporating this 
method would provide reliable data because this method 
can count the number of mRNA expressions for each cell 
type in the organ. Whether for RNA-Seq or spatial biol-
ogy, the small number of target genes is an advantage. 
The four genes in this paper will be helpful for future 
research. Although the current research on these genes 
focus only in liver, it is worth extending their application 
to other organs because the genotoxic mechanism involv-
ing them can be common in all organs.

Conclusions
The present results unequivocally demonstrate the per-
formance of four genotoxic marker genes (Bax, Btg2, 
Ccng1, and Cdkn1a) and PCA in discriminating GTHCs 
from NGTHCs and NGTNHCs in Open TG-GATEs. 
These findings strongly support our recommendation 
that future rat liver in  vivo toxicogenomics tests pri-
oritize these four genotoxic marker genes, as they have 
proven to be highly effective in discriminating between 
different types of hepatocarcinogens.
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